对数Sobolev不等式的Feynman-Kac方法

C. Steiner
{"title":"对数Sobolev不等式的Feynman-Kac方法","authors":"C. Steiner","doi":"10.1214/21-ejp656","DOIUrl":null,"url":null,"abstract":"This note presents a method based on Feynman-Kac semigroups for logarithmic Sobolev inequalities. It follows the recent work of Bonnefont and Joulin on intertwining relations for diffusion operators, formerly used for spectral gap inequalities. In particular, it goes beyond the Bakry-{E}mery criterion and allows to investigate high-dimensional effects on the optimal logarithmic Sobolev constant. The method is finally illustrated on particular examples, for which explicit dimension-free bounds on the latter constant are provided.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Feynman-Kac approach for logarithmic Sobolev inequalities\",\"authors\":\"C. Steiner\",\"doi\":\"10.1214/21-ejp656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note presents a method based on Feynman-Kac semigroups for logarithmic Sobolev inequalities. It follows the recent work of Bonnefont and Joulin on intertwining relations for diffusion operators, formerly used for spectral gap inequalities. In particular, it goes beyond the Bakry-{E}mery criterion and allows to investigate high-dimensional effects on the optimal logarithmic Sobolev constant. The method is finally illustrated on particular examples, for which explicit dimension-free bounds on the latter constant are provided.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-ejp656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-ejp656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于Feynman-Kac半群的对数Sobolev不等式的方法。它遵循了Bonnefont和Joulin最近关于扩散算符的缠结关系的工作,扩散算符以前用于谱间隙不等式。特别是,它超越了Bakry-{E}mery准则,并允许研究最优对数Sobolev常数的高维效应。最后通过具体的例子说明了该方法,并给出了后一常数的显式无量纲边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Feynman-Kac approach for logarithmic Sobolev inequalities
This note presents a method based on Feynman-Kac semigroups for logarithmic Sobolev inequalities. It follows the recent work of Bonnefont and Joulin on intertwining relations for diffusion operators, formerly used for spectral gap inequalities. In particular, it goes beyond the Bakry-{E}mery criterion and allows to investigate high-dimensional effects on the optimal logarithmic Sobolev constant. The method is finally illustrated on particular examples, for which explicit dimension-free bounds on the latter constant are provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信