一类分段递增映射的不变密度计算

Zi Wang, Jiu Ding, N. Rhee
{"title":"一类分段递增映射的不变密度计算","authors":"Zi Wang, Jiu Ding, N. Rhee","doi":"10.1142/s0218127423500578","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a piecewise increasing mapping satisfying some generalized convexity condition, so that it possesses an invariant density that is a decreasing function. We show that this invariant density can be computed by a family of Markov finite approximations that preserve the monotonicity of integrable functions. We also construct a quadratic spline Markov method and demonstrate its merits numerically.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"11 1","pages":"2350057:1-2350057:11"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing Invariant Densities of a Class of Piecewise Increasing Mappings\",\"authors\":\"Zi Wang, Jiu Ding, N. Rhee\",\"doi\":\"10.1142/s0218127423500578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let [Formula: see text] be a piecewise increasing mapping satisfying some generalized convexity condition, so that it possesses an invariant density that is a decreasing function. We show that this invariant density can be computed by a family of Markov finite approximations that preserve the monotonicity of integrable functions. We also construct a quadratic spline Markov method and demonstrate its merits numerically.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"11 1\",\"pages\":\"2350057:1-2350057:11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423500578\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设[公式:见文]为满足某些广义凸性条件的分段递增映射,使其具有不变密度为递减函数。我们证明了这种不变密度可以用一组保持可积函数单调性的马尔可夫有限近似来计算。构造了二次样条马尔可夫方法,并用数值方法证明了其优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Invariant Densities of a Class of Piecewise Increasing Mappings
Let [Formula: see text] be a piecewise increasing mapping satisfying some generalized convexity condition, so that it possesses an invariant density that is a decreasing function. We show that this invariant density can be computed by a family of Markov finite approximations that preserve the monotonicity of integrable functions. We also construct a quadratic spline Markov method and demonstrate its merits numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信