线性离散时变随机系统各向异性范数的状态空间公式

A. Kustov
{"title":"线性离散时变随机系统各向异性范数的状态空间公式","authors":"A. Kustov","doi":"10.1109/ICEEE.2018.8533987","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of computation of anisotropic norm of linear discrete time varying finite horizon stochastic system in state-space terms is solved. The relationship with the similar problem in deterministic setting is given. In contrary to this case, the obtained formulas consist of one more matrix equation because of the decomposition of random matrices of a system into two parts associated with the two first stochastic moments.","PeriodicalId":6924,"journal":{"name":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"37 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"State-Space Formulas for Anisotropic Norm of Linear Discrete Time Varying Stochastic System\",\"authors\":\"A. Kustov\",\"doi\":\"10.1109/ICEEE.2018.8533987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of computation of anisotropic norm of linear discrete time varying finite horizon stochastic system in state-space terms is solved. The relationship with the similar problem in deterministic setting is given. In contrary to this case, the obtained formulas consist of one more matrix equation because of the decomposition of random matrices of a system into two parts associated with the two first stochastic moments.\",\"PeriodicalId\":6924,\"journal\":{\"name\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"37 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2018.8533987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2018.8533987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文解决了线性离散时变有限水平随机系统在状态空间项上的各向异性范数计算问题。给出了在确定性环境下与同类问题的关系。与这种情况相反,由于系统的随机矩阵分解为与前两个随机矩相关的两部分,所得到的公式由多一个矩阵方程组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State-Space Formulas for Anisotropic Norm of Linear Discrete Time Varying Stochastic System
In this paper, the problem of computation of anisotropic norm of linear discrete time varying finite horizon stochastic system in state-space terms is solved. The relationship with the similar problem in deterministic setting is given. In contrary to this case, the obtained formulas consist of one more matrix equation because of the decomposition of random matrices of a system into two parts associated with the two first stochastic moments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信