大型语言模型中的偏差:起源、盘点和讨论

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Roberto Navigli, Simone Conia, Björn Ross
{"title":"大型语言模型中的偏差:起源、盘点和讨论","authors":"Roberto Navigli, Simone Conia, Björn Ross","doi":"10.1145/3597307","DOIUrl":null,"url":null,"abstract":"In this article, we introduce and discuss the pervasive issue of bias in the large language models that are currently at the core of mainstream approaches to Natural Language Processing (NLP). We first introduce data selection bias, that is, the bias caused by the choice of texts that make up a training corpus. Then, we survey the different types of social bias evidenced in the text generated by language models trained on such corpora, ranging from gender to age, from sexual orientation to ethnicity, and from religion to culture. We conclude with directions focused on measuring, reducing, and tackling the aforementioned types of bias.","PeriodicalId":44355,"journal":{"name":"ACM Journal of Data and Information Quality","volume":"44 1","pages":"1 - 21"},"PeriodicalIF":1.5000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Biases in Large Language Models: Origins, Inventory, and Discussion\",\"authors\":\"Roberto Navigli, Simone Conia, Björn Ross\",\"doi\":\"10.1145/3597307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce and discuss the pervasive issue of bias in the large language models that are currently at the core of mainstream approaches to Natural Language Processing (NLP). We first introduce data selection bias, that is, the bias caused by the choice of texts that make up a training corpus. Then, we survey the different types of social bias evidenced in the text generated by language models trained on such corpora, ranging from gender to age, from sexual orientation to ethnicity, and from religion to culture. We conclude with directions focused on measuring, reducing, and tackling the aforementioned types of bias.\",\"PeriodicalId\":44355,\"journal\":{\"name\":\"ACM Journal of Data and Information Quality\",\"volume\":\"44 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Journal of Data and Information Quality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3597307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal of Data and Information Quality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3597307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 17

摘要

在本文中,我们介绍并讨论了在大型语言模型中普遍存在的偏见问题,这些问题目前是自然语言处理(NLP)主流方法的核心。我们首先介绍数据选择偏差,即由组成训练语料库的文本的选择引起的偏差。然后,我们调查了在这些语料库上训练的语言模型生成的文本中所证明的不同类型的社会偏见,从性别到年龄,从性取向到种族,从宗教到文化。我们总结了测量、减少和解决上述类型偏见的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biases in Large Language Models: Origins, Inventory, and Discussion
In this article, we introduce and discuss the pervasive issue of bias in the large language models that are currently at the core of mainstream approaches to Natural Language Processing (NLP). We first introduce data selection bias, that is, the bias caused by the choice of texts that make up a training corpus. Then, we survey the different types of social bias evidenced in the text generated by language models trained on such corpora, ranging from gender to age, from sexual orientation to ethnicity, and from religion to culture. We conclude with directions focused on measuring, reducing, and tackling the aforementioned types of bias.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Journal of Data and Information Quality
ACM Journal of Data and Information Quality COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.10
自引率
4.80%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信