基于非局部断裂理论和数值模拟的混合模式载荷下云杉木材断裂抗力预测

IF 0.6 4区 工程技术 Q4 MECHANICS
M. Romanowicz
{"title":"基于非局部断裂理论和数值模拟的混合模式载荷下云杉木材断裂抗力预测","authors":"M. Romanowicz","doi":"10.15632/jtam-pl/158823","DOIUrl":null,"url":null,"abstract":"A novel analytical model to predict fracture resistance of a quasi-brittle material, like wood, is presented. The model is based on a scaling parameter introduced into the non-local fracture theory to take into account the specimen size effect on the development of the damage zone. An expression for length of the critical process zone, which can be used in damage tolerant design of wooden structures is derived from this theory. The model is validated with mixed-mode bending tests. A numerical analysis using cohesive elements is performed to understand the role of specimen size in the development of the damage zone. The analytical predictions of the fracture resistance and the critical process zone length for wood are compared with numerical results and experimental data available in the literature.","PeriodicalId":49980,"journal":{"name":"Journal of Theoretical and Applied Mechanics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictions of fracture resistance of spruce wood under mixed mode loading using non-local fracture theory and numerical modelling\",\"authors\":\"M. Romanowicz\",\"doi\":\"10.15632/jtam-pl/158823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel analytical model to predict fracture resistance of a quasi-brittle material, like wood, is presented. The model is based on a scaling parameter introduced into the non-local fracture theory to take into account the specimen size effect on the development of the damage zone. An expression for length of the critical process zone, which can be used in damage tolerant design of wooden structures is derived from this theory. The model is validated with mixed-mode bending tests. A numerical analysis using cohesive elements is performed to understand the role of specimen size in the development of the damage zone. The analytical predictions of the fracture resistance and the critical process zone length for wood are compared with numerical results and experimental data available in the literature.\",\"PeriodicalId\":49980,\"journal\":{\"name\":\"Journal of Theoretical and Applied Mechanics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical and Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15632/jtam-pl/158823\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15632/jtam-pl/158823","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种预测准脆性材料(如木材)断裂抗力的新解析模型。该模型在非局部断裂理论中引入尺度参数,考虑了试件尺寸对损伤区发展的影响。根据这一理论推导出木结构临界过程区长度表达式,可用于木结构的容损设计。通过混模弯曲试验对模型进行了验证。采用黏聚元素进行数值分析,以了解试样尺寸在损伤区发展中的作用。对木材的抗断裂性和临界加工区长度的分析预测与文献中的数值结果和实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictions of fracture resistance of spruce wood under mixed mode loading using non-local fracture theory and numerical modelling
A novel analytical model to predict fracture resistance of a quasi-brittle material, like wood, is presented. The model is based on a scaling parameter introduced into the non-local fracture theory to take into account the specimen size effect on the development of the damage zone. An expression for length of the critical process zone, which can be used in damage tolerant design of wooden structures is derived from this theory. The model is validated with mixed-mode bending tests. A numerical analysis using cohesive elements is performed to understand the role of specimen size in the development of the damage zone. The analytical predictions of the fracture resistance and the critical process zone length for wood are compared with numerical results and experimental data available in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
14.30%
发文量
22
审稿时长
6 months
期刊介绍: The scope of JTAM contains: - solid mechanics - fluid mechanics - fluid structures interactions - stability and vibrations systems - robotic and control systems - mechanics of materials - dynamics of machines, vehicles and flying structures - inteligent systems - nanomechanics - biomechanics - computational mechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信