{"title":"二年级梦想的延伸","authors":"G. Román","doi":"10.2478/auom-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are going to look at the convergence properties of the integral ∫01(ax+b)cx+ddx\\int_0^1 {{{\\left( {ax + b} \\right)}^{cx + d}}dx}, and express it in series form, where a, b, c and d are real parameters.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extension of the Sophomore’s Dream\",\"authors\":\"G. Román\",\"doi\":\"10.2478/auom-2021-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are going to look at the convergence properties of the integral ∫01(ax+b)cx+ddx\\\\int_0^1 {{{\\\\left( {ax + b} \\\\right)}^{cx + d}}dx}, and express it in series form, where a, b, c and d are real parameters.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2021-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Abstract In this article, we are going to look at the convergence properties of the integral ∫01(ax+b)cx+ddx\int_0^1 {{{\left( {ax + b} \right)}^{cx + d}}dx}, and express it in series form, where a, b, c and d are real parameters.