一类三阶三点边值问题单调正解的存在唯一性

A. Palamides, N. Stavrakakis
{"title":"一类三阶三点边值问题单调正解的存在唯一性","authors":"A. Palamides, N. Stavrakakis","doi":"10.7153/DEA-2018-10-18","DOIUrl":null,"url":null,"abstract":"In this work we study a third-order three-point boundary-value problem (BVP). We derive sucient conditions that guarantee the positivity of the solution of the corresponding linear BVP Then, based on the classi- cal Guo-Krasnosel'skii's fixed point theorem, we obtain positive solutions to the nonlinear BVP. Additional hypotheses guarantee the uniqueness of the solution.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"33 1","pages":"251-260"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Existence and uniqueness of monotone positive solutions for a third-order three-point boundary value problem\",\"authors\":\"A. Palamides, N. Stavrakakis\",\"doi\":\"10.7153/DEA-2018-10-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we study a third-order three-point boundary-value problem (BVP). We derive sucient conditions that guarantee the positivity of the solution of the corresponding linear BVP Then, based on the classi- cal Guo-Krasnosel'skii's fixed point theorem, we obtain positive solutions to the nonlinear BVP. Additional hypotheses guarantee the uniqueness of the solution.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"33 1\",\"pages\":\"251-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/DEA-2018-10-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-2018-10-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一类三阶三点边值问题。在此基础上,利用经典的Guo-Krasnosel'skii不动点定理,得到了相应线性BVP解的正解。附加的假设保证了解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and uniqueness of monotone positive solutions for a third-order three-point boundary value problem
In this work we study a third-order three-point boundary-value problem (BVP). We derive sucient conditions that guarantee the positivity of the solution of the corresponding linear BVP Then, based on the classi- cal Guo-Krasnosel'skii's fixed point theorem, we obtain positive solutions to the nonlinear BVP. Additional hypotheses guarantee the uniqueness of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信