模理论,纤维的稳定性和最优辛连接

IF 2 1区 数学
R. Dervan, Lars Martin Sektnan
{"title":"模理论,纤维的稳定性和最优辛连接","authors":"R. Dervan, Lars Martin Sektnan","doi":"10.2140/gt.2021.25.2643","DOIUrl":null,"url":null,"abstract":"K-polystability is, on the one hand, conjecturally equivalent to the existence of certain canonical Kahler metrics on polarised varieties, and, on the other hand, conjecturally gives the correct notion to form moduli. We introduce a notion of stability for families of K-polystable varieties, extending the classical notion of slope stability of a bundle, viewed as a family of K-polystable varieties via the associated projectivisation. We conjecture that this is the correct condition for forming moduli of fibrations. \nOur main result relates this stability condition to Kahler geometry: we prove that the existence of an optimal symplectic connection implies semistability of the fibration. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kahler metric, satisfying a certain geometric partial differential equation. We conjecture that the existence of such a connection is equivalent to polystability of the fibration. We prove a finite dimensional analogue of this conjecture, by describing a GIT problem for fibrations embedded in a fixed projective space, and showing that GIT polystability is equivalent to the existence of a zero of a certain moment map.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"60 7 Pt 2 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Moduli theory, stability of fibrations and optimal symplectic connections\",\"authors\":\"R. Dervan, Lars Martin Sektnan\",\"doi\":\"10.2140/gt.2021.25.2643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"K-polystability is, on the one hand, conjecturally equivalent to the existence of certain canonical Kahler metrics on polarised varieties, and, on the other hand, conjecturally gives the correct notion to form moduli. We introduce a notion of stability for families of K-polystable varieties, extending the classical notion of slope stability of a bundle, viewed as a family of K-polystable varieties via the associated projectivisation. We conjecture that this is the correct condition for forming moduli of fibrations. \\nOur main result relates this stability condition to Kahler geometry: we prove that the existence of an optimal symplectic connection implies semistability of the fibration. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kahler metric, satisfying a certain geometric partial differential equation. We conjecture that the existence of such a connection is equivalent to polystability of the fibration. We prove a finite dimensional analogue of this conjecture, by describing a GIT problem for fibrations embedded in a fixed projective space, and showing that GIT polystability is equivalent to the existence of a zero of a certain moment map.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"60 7 Pt 2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2019-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/gt.2021.25.2643\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.2643","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

k -多稳定性一方面在推测上等价于某些正则Kahler度量在极化变体上的存在性,另一方面在推测上给出了模的正确概念。我们引入了k -聚稳定变种族的稳定性概念,通过相关的投影扩展了看作k -聚稳定变种族的束的边坡稳定性的经典概念。我们推测这是形成振动模量的正确条件。我们的主要结果将这种稳定性条件与Kahler几何联系起来:我们证明了最优辛连接的存在意味着纤维的半不稳定性。最优辛连接是指纤维向常数标量曲率Kahler度规的选择,满足一定的几何偏微分方程。我们推测这种连接的存在等价于纤维的多稳定性。我们通过描述一个嵌入在固定射影空间中的纤维的GIT问题,证明了这个猜想的有限维类比,并证明了GIT多稳定性等价于某个矩映射的零的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli theory, stability of fibrations and optimal symplectic connections
K-polystability is, on the one hand, conjecturally equivalent to the existence of certain canonical Kahler metrics on polarised varieties, and, on the other hand, conjecturally gives the correct notion to form moduli. We introduce a notion of stability for families of K-polystable varieties, extending the classical notion of slope stability of a bundle, viewed as a family of K-polystable varieties via the associated projectivisation. We conjecture that this is the correct condition for forming moduli of fibrations. Our main result relates this stability condition to Kahler geometry: we prove that the existence of an optimal symplectic connection implies semistability of the fibration. An optimal symplectic connection is a choice of fibrewise constant scalar curvature Kahler metric, satisfying a certain geometric partial differential equation. We conjecture that the existence of such a connection is equivalent to polystability of the fibration. We prove a finite dimensional analogue of this conjecture, by describing a GIT problem for fibrations embedded in a fixed projective space, and showing that GIT polystability is equivalent to the existence of a zero of a certain moment map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信