LMTK3在染色质重塑和转录调控中的作用

Yichen Xu, J. Stebbing, G. Giamas
{"title":"LMTK3在染色质重塑和转录调控中的作用","authors":"Yichen Xu, J. Stebbing, G. Giamas","doi":"10.14800/RCI.1038","DOIUrl":null,"url":null,"abstract":"Nuclear receptor tyrosine kinases such as EGFR have been shown to be associated with increased tumor grade and poorer patient survival. One explanation for this is that following nuclear transport, these RTKs are directly involved in the transcriptional regulation through chromatin binding. LMTK3 is a novel oncogenic RTK implicated in breast cancer, whose cytoplasmic and nuclear abundance are highly associated with poorer survival in breast cancer patient. So far the function of the cytoplasmic LMTK3 in breast cancer growth, invasion and endocrine resistance has been addressed, however little is known about the role of nuclear LMTK3. In our recent study, we discovered that LMTK3 binds chromatin via its interacting partners PP1α and KAP1. Moreover, LMTK3 induces the tethering of chromatin to the nuclear periphery. These events result in chromatin condensation and subsequent transcriptional repression of various tumor suppressor-like genes, leading to breast cancer progression. Overall, this research work provides an insight of the nuclear kinase function and suggests that targeting LMTK3 may have further clinical potentials in treating breast cancer.","PeriodicalId":20980,"journal":{"name":"Receptors and clinical investigation","volume":"235 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of LMTK3 in chromatin remodeling and transcriptional regulation\",\"authors\":\"Yichen Xu, J. Stebbing, G. Giamas\",\"doi\":\"10.14800/RCI.1038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclear receptor tyrosine kinases such as EGFR have been shown to be associated with increased tumor grade and poorer patient survival. One explanation for this is that following nuclear transport, these RTKs are directly involved in the transcriptional regulation through chromatin binding. LMTK3 is a novel oncogenic RTK implicated in breast cancer, whose cytoplasmic and nuclear abundance are highly associated with poorer survival in breast cancer patient. So far the function of the cytoplasmic LMTK3 in breast cancer growth, invasion and endocrine resistance has been addressed, however little is known about the role of nuclear LMTK3. In our recent study, we discovered that LMTK3 binds chromatin via its interacting partners PP1α and KAP1. Moreover, LMTK3 induces the tethering of chromatin to the nuclear periphery. These events result in chromatin condensation and subsequent transcriptional repression of various tumor suppressor-like genes, leading to breast cancer progression. Overall, this research work provides an insight of the nuclear kinase function and suggests that targeting LMTK3 may have further clinical potentials in treating breast cancer.\",\"PeriodicalId\":20980,\"journal\":{\"name\":\"Receptors and clinical investigation\",\"volume\":\"235 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Receptors and clinical investigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14800/RCI.1038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Receptors and clinical investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14800/RCI.1038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核受体酪氨酸激酶(如EGFR)已被证明与肿瘤分级增加和患者生存率降低相关。对此的一种解释是,在核转运之后,这些rtk通过染色质结合直接参与转录调控。LMTK3是一种与乳腺癌有关的新型致癌RTK,其细胞质和核丰度与乳腺癌患者较差的生存率高度相关。到目前为止,细胞质LMTK3在乳腺癌生长、侵袭和内分泌抵抗中的作用已经得到解决,但对核LMTK3的作用知之甚少。在我们最近的研究中,我们发现LMTK3通过其相互作用伙伴PP1α和KAP1结合染色质。此外,LMTK3诱导染色质系聚到核外周。这些事件导致染色质凝聚和随后各种肿瘤抑制样基因的转录抑制,导致乳腺癌进展。总的来说,这项研究工作提供了对核激酶功能的深入了解,并表明靶向LMTK3可能在治疗乳腺癌方面具有进一步的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of LMTK3 in chromatin remodeling and transcriptional regulation
Nuclear receptor tyrosine kinases such as EGFR have been shown to be associated with increased tumor grade and poorer patient survival. One explanation for this is that following nuclear transport, these RTKs are directly involved in the transcriptional regulation through chromatin binding. LMTK3 is a novel oncogenic RTK implicated in breast cancer, whose cytoplasmic and nuclear abundance are highly associated with poorer survival in breast cancer patient. So far the function of the cytoplasmic LMTK3 in breast cancer growth, invasion and endocrine resistance has been addressed, however little is known about the role of nuclear LMTK3. In our recent study, we discovered that LMTK3 binds chromatin via its interacting partners PP1α and KAP1. Moreover, LMTK3 induces the tethering of chromatin to the nuclear periphery. These events result in chromatin condensation and subsequent transcriptional repression of various tumor suppressor-like genes, leading to breast cancer progression. Overall, this research work provides an insight of the nuclear kinase function and suggests that targeting LMTK3 may have further clinical potentials in treating breast cancer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信