费米-狄拉克函数及其导数的自适应求积分

M. N. Anandaram
{"title":"费米-狄拉克函数及其导数的自适应求积分","authors":"M. N. Anandaram","doi":"10.12723/MJS.48.1","DOIUrl":null,"url":null,"abstract":"In this paper, using the Python SciPy module “quad”, a fast auto-adaptive quadrature solver based on the pre-compiled QUADPACK Fortran package, computational research is undertaken to accurately integrate the generalised Fermi-Dirac function and all its partial derivatives up to the third order. The numerical results obtained with quad method when combined with optimised break points achieve an excellent accuracy comparable to that obtained by other publications using fixed-order quadratures.","PeriodicalId":18050,"journal":{"name":"Mapana Journal of Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Adaptive Quadrature of Fermi-Dirac Functions and their Derivatives\",\"authors\":\"M. N. Anandaram\",\"doi\":\"10.12723/MJS.48.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, using the Python SciPy module “quad”, a fast auto-adaptive quadrature solver based on the pre-compiled QUADPACK Fortran package, computational research is undertaken to accurately integrate the generalised Fermi-Dirac function and all its partial derivatives up to the third order. The numerical results obtained with quad method when combined with optimised break points achieve an excellent accuracy comparable to that obtained by other publications using fixed-order quadratures.\",\"PeriodicalId\":18050,\"journal\":{\"name\":\"Mapana Journal of Sciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mapana Journal of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12723/MJS.48.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapana Journal of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12723/MJS.48.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用Python SciPy模块“quad”——一个基于预编译的QUADPACK Fortran包的快速自适应正交求解器,进行了精确积分广义费米-狄拉克函数及其所有三阶偏导数的计算研究。当与优化断点相结合时,用四次法得到的数值结果与其他出版物使用定阶正交得到的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Adaptive Quadrature of Fermi-Dirac Functions and their Derivatives
In this paper, using the Python SciPy module “quad”, a fast auto-adaptive quadrature solver based on the pre-compiled QUADPACK Fortran package, computational research is undertaken to accurately integrate the generalised Fermi-Dirac function and all its partial derivatives up to the third order. The numerical results obtained with quad method when combined with optimised break points achieve an excellent accuracy comparable to that obtained by other publications using fixed-order quadratures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信