Cl−在溶液中诱导合成亚微米立方铜颗粒

Minyi Hu , Kanggen Zhou , Chongguo Wang , Rui Xu
{"title":"Cl−在溶液中诱导合成亚微米立方铜颗粒","authors":"Minyi Hu ,&nbsp;Kanggen Zhou ,&nbsp;Chongguo Wang ,&nbsp;Rui Xu","doi":"10.1016/S1005-8850(08)60123-1","DOIUrl":null,"url":null,"abstract":"<div><p>Submicron copper microcrystal was synthesized by reducing Cu<sub>2</sub>O with hydrazine hydrate as reducer in aqueous solution, and was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The shapes of copper microcrystal depend on additives. Cubic copper particles were observed when the inorganic salt containing Cl<sup>−</sup>, such as NH<sub>4</sub>Cl, NaCl, or KCl, was added into the reaction system. By combined use of NH<sub>4</sub>Cl and polyvinylpyrrolidone (PVP), the proportion of cubic copper particle number exceeded 90%, and the particle size is 0.1∼0.5 μm. While other inorganic salt without Cl<sup>−</sup>, such as Na<sub>2</sub>SO<sub>4</sub> or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, had little effect on the shapes of the copper particles. The growth mechanism of metallic copper crystal in aqueous solution was analyzed. It is suggested that the formation of cubic copper crystals is ascribed to the selective adsorption of Cl<sup>−</sup> on copper crystal (100) faces.</p></div>","PeriodicalId":100851,"journal":{"name":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","volume":"15 5","pages":"Pages 659-664"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60123-1","citationCount":"4","resultStr":"{\"title\":\"Cl− induced synthesis of submicron cubic copper particles in solution\",\"authors\":\"Minyi Hu ,&nbsp;Kanggen Zhou ,&nbsp;Chongguo Wang ,&nbsp;Rui Xu\",\"doi\":\"10.1016/S1005-8850(08)60123-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Submicron copper microcrystal was synthesized by reducing Cu<sub>2</sub>O with hydrazine hydrate as reducer in aqueous solution, and was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The shapes of copper microcrystal depend on additives. Cubic copper particles were observed when the inorganic salt containing Cl<sup>−</sup>, such as NH<sub>4</sub>Cl, NaCl, or KCl, was added into the reaction system. By combined use of NH<sub>4</sub>Cl and polyvinylpyrrolidone (PVP), the proportion of cubic copper particle number exceeded 90%, and the particle size is 0.1∼0.5 μm. While other inorganic salt without Cl<sup>−</sup>, such as Na<sub>2</sub>SO<sub>4</sub> or (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, had little effect on the shapes of the copper particles. The growth mechanism of metallic copper crystal in aqueous solution was analyzed. It is suggested that the formation of cubic copper crystals is ascribed to the selective adsorption of Cl<sup>−</sup> on copper crystal (100) faces.</p></div>\",\"PeriodicalId\":100851,\"journal\":{\"name\":\"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material\",\"volume\":\"15 5\",\"pages\":\"Pages 659-664\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1005-8850(08)60123-1\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1005885008601231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005885008601231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

以水合肼为还原剂,在水溶液中还原Cu2O合成了亚微米级铜微晶,并用x射线衍射(XRD)和扫描电镜(SEM)对其进行了表征。铜微晶的形状与添加剂有关。在反应体系中加入含Cl−的无机盐,如NH4Cl、NaCl或KCl,可以得到立方铜颗粒。NH4Cl与聚乙烯吡咯烷酮(PVP)联合使用,得到的立方铜颗粒数占比超过90%,粒径为0.1 ~ 0.5 μm。而其他不含Cl−的无机盐,如Na2SO4或(NH4)2SO4,对铜颗粒的形状影响不大。分析了金属铜晶体在水溶液中的生长机理。认为立方铜晶体的形成是由于Cl−在铜晶体(100)表面的选择性吸附所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cl− induced synthesis of submicron cubic copper particles in solution

Submicron copper microcrystal was synthesized by reducing Cu2O with hydrazine hydrate as reducer in aqueous solution, and was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The shapes of copper microcrystal depend on additives. Cubic copper particles were observed when the inorganic salt containing Cl, such as NH4Cl, NaCl, or KCl, was added into the reaction system. By combined use of NH4Cl and polyvinylpyrrolidone (PVP), the proportion of cubic copper particle number exceeded 90%, and the particle size is 0.1∼0.5 μm. While other inorganic salt without Cl, such as Na2SO4 or (NH4)2SO4, had little effect on the shapes of the copper particles. The growth mechanism of metallic copper crystal in aqueous solution was analyzed. It is suggested that the formation of cubic copper crystals is ascribed to the selective adsorption of Cl on copper crystal (100) faces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信