{"title":"基于单目SLAM尺度估计的EKF、SVSF、联合SVSF-EKF和ASVSF方法的比较研究","authors":"Elhaouari Kobzili, Ahmed Allam, C. Larbes","doi":"10.5220/0011317100003271","DOIUrl":null,"url":null,"abstract":": This paper presents a comparative study of scale recovering in monocular simultaneous localization and mapping (Mono-SLAM) by adopting and adapting four estimators into a multi-rate fusion mechanism and considering the scale as an element of the state vector. These estimators are: extended Kalman filter (EKF), smooth variable structure filter (SVSF), combined SVSF-EKF, and particularly adaptive smooth variable structure filter (ASVSF). The use of the ASVSF estimator represents the novelty of this paper because it provides a robust estimation of the trajectory scale as well as the covariance matrix at each iteration. This later represents the estimation incertitude. A second sensor is involved (inertial measurement unit (IMU)) as a reference to align the up to scale trajectory provided by the Mono-SLAM box. The designed system allows finding the scale factor with a rate not further than the IMU frequency and avoids complex synchronization. In order to outline the limitation of each estimator used for scale recovering, a deep analysis of the proposed approaches in terms of robustness, stability, accuracy, and real-time constraint was carried out.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"18 1","pages":"668-679"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Study between EKF, SVSF, Combined SVSF-EKF, and ASVSF Approaches based Scale Estimation of Monocular SLAM\",\"authors\":\"Elhaouari Kobzili, Ahmed Allam, C. Larbes\",\"doi\":\"10.5220/0011317100003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper presents a comparative study of scale recovering in monocular simultaneous localization and mapping (Mono-SLAM) by adopting and adapting four estimators into a multi-rate fusion mechanism and considering the scale as an element of the state vector. These estimators are: extended Kalman filter (EKF), smooth variable structure filter (SVSF), combined SVSF-EKF, and particularly adaptive smooth variable structure filter (ASVSF). The use of the ASVSF estimator represents the novelty of this paper because it provides a robust estimation of the trajectory scale as well as the covariance matrix at each iteration. This later represents the estimation incertitude. A second sensor is involved (inertial measurement unit (IMU)) as a reference to align the up to scale trajectory provided by the Mono-SLAM box. The designed system allows finding the scale factor with a rate not further than the IMU frequency and avoids complex synchronization. In order to outline the limitation of each estimator used for scale recovering, a deep analysis of the proposed approaches in terms of robustness, stability, accuracy, and real-time constraint was carried out.\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"18 1\",\"pages\":\"668-679\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011317100003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011317100003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparative Study between EKF, SVSF, Combined SVSF-EKF, and ASVSF Approaches based Scale Estimation of Monocular SLAM
: This paper presents a comparative study of scale recovering in monocular simultaneous localization and mapping (Mono-SLAM) by adopting and adapting four estimators into a multi-rate fusion mechanism and considering the scale as an element of the state vector. These estimators are: extended Kalman filter (EKF), smooth variable structure filter (SVSF), combined SVSF-EKF, and particularly adaptive smooth variable structure filter (ASVSF). The use of the ASVSF estimator represents the novelty of this paper because it provides a robust estimation of the trajectory scale as well as the covariance matrix at each iteration. This later represents the estimation incertitude. A second sensor is involved (inertial measurement unit (IMU)) as a reference to align the up to scale trajectory provided by the Mono-SLAM box. The designed system allows finding the scale factor with a rate not further than the IMU frequency and avoids complex synchronization. In order to outline the limitation of each estimator used for scale recovering, a deep analysis of the proposed approaches in terms of robustness, stability, accuracy, and real-time constraint was carried out.