基于smt的参数化系统验证

A. Gurfinkel, Sharon Shoham, Yuri Meshman
{"title":"基于smt的参数化系统验证","authors":"A. Gurfinkel, Sharon Shoham, Yuri Meshman","doi":"10.1145/2950290.2950330","DOIUrl":null,"url":null,"abstract":"It is well known that verification of safety properties of sequential programs is reducible to satisfiability modulo theory of a first-order logic formula, called a verification condition (VC). The reduction is used both in deductive and automated verification, the difference is only in whether the user or the solver provides candidates for inductive invariants. In this paper, we extend the reduction to parameterized systems consisting of arbitrary many copies of a user-specified process, and whose transition relation is definable in first-order logic modulo theory of linear arithmetic and arrays. We show that deciding whether a parameterized system has a universally quantified inductive invariant is reducible to satisfiability of (non-linear) Constraint Horn Clauses (CHC). As a consequence of our reduction, we obtain a new automated procedure for verifying parameterized systems using existing PDR and CHC engines. While the new procedure is applicable to a wide variety of systems, we show that it is a decision procedure for several decidable fragments.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"SMT-based verification of parameterized systems\",\"authors\":\"A. Gurfinkel, Sharon Shoham, Yuri Meshman\",\"doi\":\"10.1145/2950290.2950330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that verification of safety properties of sequential programs is reducible to satisfiability modulo theory of a first-order logic formula, called a verification condition (VC). The reduction is used both in deductive and automated verification, the difference is only in whether the user or the solver provides candidates for inductive invariants. In this paper, we extend the reduction to parameterized systems consisting of arbitrary many copies of a user-specified process, and whose transition relation is definable in first-order logic modulo theory of linear arithmetic and arrays. We show that deciding whether a parameterized system has a universally quantified inductive invariant is reducible to satisfiability of (non-linear) Constraint Horn Clauses (CHC). As a consequence of our reduction, we obtain a new automated procedure for verifying parameterized systems using existing PDR and CHC engines. While the new procedure is applicable to a wide variety of systems, we show that it is a decision procedure for several decidable fragments.\",\"PeriodicalId\":20532,\"journal\":{\"name\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2950290.2950330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2950330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

众所周知,序列程序的安全性验证可以归结为一阶逻辑公式的可满足模理论,称为验证条件(VC)。约简既用于演绎验证也用于自动验证,区别仅在于用户或求解器是否提供归纳不变量的候选项。本文将此约简推广到由用户指定过程的任意多个副本组成的参数化系统,该系统的转移关系在线性算术和数组的一阶逻辑模理论中是可定义的。我们证明了判定参数化系统是否具有普遍量化的归纳不变量可约化为(非线性)约束角子句(CHC)的可满足性。由于我们的简化,我们获得了一个新的自动化程序,用于使用现有的PDR和CHC引擎验证参数化系统。虽然新程序适用于各种各样的系统,但我们表明它是几个可确定片段的决策程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SMT-based verification of parameterized systems
It is well known that verification of safety properties of sequential programs is reducible to satisfiability modulo theory of a first-order logic formula, called a verification condition (VC). The reduction is used both in deductive and automated verification, the difference is only in whether the user or the solver provides candidates for inductive invariants. In this paper, we extend the reduction to parameterized systems consisting of arbitrary many copies of a user-specified process, and whose transition relation is definable in first-order logic modulo theory of linear arithmetic and arrays. We show that deciding whether a parameterized system has a universally quantified inductive invariant is reducible to satisfiability of (non-linear) Constraint Horn Clauses (CHC). As a consequence of our reduction, we obtain a new automated procedure for verifying parameterized systems using existing PDR and CHC engines. While the new procedure is applicable to a wide variety of systems, we show that it is a decision procedure for several decidable fragments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信