Lie - Trotter分裂方案全局误差的积分表达式

IF 2.2 Q1 MATHEMATICS, APPLIED
M. Seydaoğlu
{"title":"Lie - Trotter分裂方案全局误差的积分表达式","authors":"M. Seydaoğlu","doi":"10.11121/ijocta.01.2019.00625","DOIUrl":null,"url":null,"abstract":"An ordinary differential equation (ODE) can be split into simpler sub equations and each  of the  sub equations is  solved subsequently by a numerical method. Such a procedure  involves splitting error and numerical error caused by the time stepping methods applied to sub equations.  The aim of the paper is to present  an integral formula for the global error expansion of a splitting  procedure combined with any  numerical  ODE solver.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"7 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integral formulation for the global error of Lie Trotter splitting scheme\",\"authors\":\"M. Seydaoğlu\",\"doi\":\"10.11121/ijocta.01.2019.00625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ordinary differential equation (ODE) can be split into simpler sub equations and each  of the  sub equations is  solved subsequently by a numerical method. Such a procedure  involves splitting error and numerical error caused by the time stepping methods applied to sub equations.  The aim of the paper is to present  an integral formula for the global error expansion of a splitting  procedure combined with any  numerical  ODE solver.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.01.2019.00625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.01.2019.00625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

常微分方程可以分解成更简单的子方程,每个子方程随后用数值方法求解。这一过程涉及到由时间步进法应用于子方程引起的分裂误差和数值误差。本文的目的是给出与任意数值ODE求解器结合的分裂过程的全局误差展开的积分公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integral formulation for the global error of Lie Trotter splitting scheme
An ordinary differential equation (ODE) can be split into simpler sub equations and each  of the  sub equations is  solved subsequently by a numerical method. Such a procedure  involves splitting error and numerical error caused by the time stepping methods applied to sub equations.  The aim of the paper is to present  an integral formula for the global error expansion of a splitting  procedure combined with any  numerical  ODE solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信