涉及Laplace-Beltrami算子的偏微分方程系统的存在性、唯一性和集中性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Amar, R. Gianni
{"title":"涉及Laplace-Beltrami算子的偏微分方程系统的存在性、唯一性和集中性","authors":"M. Amar, R. Gianni","doi":"10.4171/IFB/416","DOIUrl":null,"url":null,"abstract":"In this paper we derive a model for heat diffusion in a composi te medium in which the different components are separated by thermally active interf ac s. The previous result is obtained via a concentrated capacity procedure and leads to a non-sta ntard system of PDEs involving a Laplace-Beltrami operator acting on the interface. For suc h a system well-posedness is proved using contraction mapping and abstract parabolic problems theory. Finally, the exponential convergence (in time) of the solutions of our system to a steady s tate is proved. 2010 Mathematics Subject Classification: Primary 35K20; Secondary 35K90, 35B40.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Existence, uniqueness and concentration for a system of PDEs involving the Laplace–Beltrami operator\",\"authors\":\"M. Amar, R. Gianni\",\"doi\":\"10.4171/IFB/416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we derive a model for heat diffusion in a composi te medium in which the different components are separated by thermally active interf ac s. The previous result is obtained via a concentrated capacity procedure and leads to a non-sta ntard system of PDEs involving a Laplace-Beltrami operator acting on the interface. For suc h a system well-posedness is proved using contraction mapping and abstract parabolic problems theory. Finally, the exponential convergence (in time) of the solutions of our system to a steady s tate is proved. 2010 Mathematics Subject Classification: Primary 35K20; Secondary 35K90, 35B40.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/IFB/416\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/IFB/416","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

在本文中,我们推导了一个复合介质中的热扩散模型,其中不同组分被热活性界面分离。先前的结果是通过集中容量过程得到的,并导致了涉及作用于界面上的拉普拉斯-贝尔特拉米算子的非稳态偏微分方程系统。利用压缩映射和抽象抛物问题理论证明了该系统的适定性。最后,证明了系统解在时间上的指数收敛性。2010年数学学科分类:小学35K20;二级35K90, 35B40。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness and concentration for a system of PDEs involving the Laplace–Beltrami operator
In this paper we derive a model for heat diffusion in a composi te medium in which the different components are separated by thermally active interf ac s. The previous result is obtained via a concentrated capacity procedure and leads to a non-sta ntard system of PDEs involving a Laplace-Beltrami operator acting on the interface. For suc h a system well-posedness is proved using contraction mapping and abstract parabolic problems theory. Finally, the exponential convergence (in time) of the solutions of our system to a steady s tate is proved. 2010 Mathematics Subject Classification: Primary 35K20; Secondary 35K90, 35B40.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信