基于局部二进制模式及其变体的孟加拉手写体字符识别

Chandrika Saha, Rahat Hossain Faisal, Md. Mostafijur Rahman
{"title":"基于局部二进制模式及其变体的孟加拉手写体字符识别","authors":"Chandrika Saha, Rahat Hossain Faisal, Md. Mostafijur Rahman","doi":"10.1109/ICISET.2018.8745645","DOIUrl":null,"url":null,"abstract":"Optical Character Recognition (OCR) especially for handwritten characters is an important task for its numerous applications in daily life including data digitizing, robotics vision, helping visually disabled people and many more. However, Bangla Handwritten Character Recognition (HCR) is rarely explored despite Bangla being one of the mostly spoken languages over the world. For classifying Bangla basic characters, compound characters and digits various feature descriptors and classification algorithms can be used. This paper provides a comparative study of different Local Binary Pattern (LBP) based feature descriptors on Bangla basic characters, compound characters and digits. For classification, Support Vector Machine (SVM) with linear kernel is used. The rigorous experiments on CMATERdb 3.1.2, CMATERdb 3.1.3.1 and CMATERdb 3.1.1 datasets for Bangla basic characters, Bangla compound characters and Bangla digits respectively have showed reasonable accuracies of different LBP based feature descriptors.","PeriodicalId":6608,"journal":{"name":"2018 International Conference on Innovations in Science, Engineering and Technology (ICISET)","volume":"15 1","pages":"236-241"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bangla Handwritten Character Recognition Using Local Binary Pattern and Its Variants\",\"authors\":\"Chandrika Saha, Rahat Hossain Faisal, Md. Mostafijur Rahman\",\"doi\":\"10.1109/ICISET.2018.8745645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical Character Recognition (OCR) especially for handwritten characters is an important task for its numerous applications in daily life including data digitizing, robotics vision, helping visually disabled people and many more. However, Bangla Handwritten Character Recognition (HCR) is rarely explored despite Bangla being one of the mostly spoken languages over the world. For classifying Bangla basic characters, compound characters and digits various feature descriptors and classification algorithms can be used. This paper provides a comparative study of different Local Binary Pattern (LBP) based feature descriptors on Bangla basic characters, compound characters and digits. For classification, Support Vector Machine (SVM) with linear kernel is used. The rigorous experiments on CMATERdb 3.1.2, CMATERdb 3.1.3.1 and CMATERdb 3.1.1 datasets for Bangla basic characters, Bangla compound characters and Bangla digits respectively have showed reasonable accuracies of different LBP based feature descriptors.\",\"PeriodicalId\":6608,\"journal\":{\"name\":\"2018 International Conference on Innovations in Science, Engineering and Technology (ICISET)\",\"volume\":\"15 1\",\"pages\":\"236-241\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Innovations in Science, Engineering and Technology (ICISET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISET.2018.8745645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Innovations in Science, Engineering and Technology (ICISET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISET.2018.8745645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

光学字符识别(OCR)在日常生活中有着广泛的应用,包括数据数字化、机器人视觉、帮助视障人士等,特别是手写字符的识别是一项重要的任务。然而,尽管孟加拉语是世界上最常用的语言之一,但孟加拉语手写字符识别(HCR)却很少被探索。在对孟加拉语基本字、复合字和数字进行分类时,可以使用各种特征描述符和分类算法。本文对基于局部二进制模式的孟加拉语基本字、复合字和数字特征描述符进行了比较研究。在分类方面,采用线性核支持向量机(SVM)进行分类。分别在CMATERdb 3.1.2、CMATERdb 3.1.3.1和CMATERdb 3.1.1数据集上对孟加拉语基本字、孟加拉语复合字和孟加拉语数字进行了严格的实验,结果表明不同的LBP特征描述符具有合理的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bangla Handwritten Character Recognition Using Local Binary Pattern and Its Variants
Optical Character Recognition (OCR) especially for handwritten characters is an important task for its numerous applications in daily life including data digitizing, robotics vision, helping visually disabled people and many more. However, Bangla Handwritten Character Recognition (HCR) is rarely explored despite Bangla being one of the mostly spoken languages over the world. For classifying Bangla basic characters, compound characters and digits various feature descriptors and classification algorithms can be used. This paper provides a comparative study of different Local Binary Pattern (LBP) based feature descriptors on Bangla basic characters, compound characters and digits. For classification, Support Vector Machine (SVM) with linear kernel is used. The rigorous experiments on CMATERdb 3.1.2, CMATERdb 3.1.3.1 and CMATERdb 3.1.1 datasets for Bangla basic characters, Bangla compound characters and Bangla digits respectively have showed reasonable accuracies of different LBP based feature descriptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信