不可分重排不变空间中的正交性

Pub Date : 2021-01-01 DOI:10.1070/SM9543
S. V. Astashkin, E. Semenov
{"title":"不可分重排不变空间中的正交性","authors":"S. V. Astashkin, E. Semenov","doi":"10.1070/SM9543","DOIUrl":null,"url":null,"abstract":"Let be a nonseparable rearrangement-invariant space and let be the closure of the space of bounded functions in . Elements of orthogonal to , that is, elements , , such that for each , are investigated. The set of orthogonal elements is characterized in the case when is a Marcinkiewicz or an Orlicz space. If an Orlicz space is considered with the Luxemburg norm, then the set is the algebraic sum of and . Each nonseparable rearrangement-invariant space such that is shown to contain an asymptotically isometric copy of the space . Bibliography: 17 titles.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonality in nonseparable rearrangement-invariant spaces\",\"authors\":\"S. V. Astashkin, E. Semenov\",\"doi\":\"10.1070/SM9543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let be a nonseparable rearrangement-invariant space and let be the closure of the space of bounded functions in . Elements of orthogonal to , that is, elements , , such that for each , are investigated. The set of orthogonal elements is characterized in the case when is a Marcinkiewicz or an Orlicz space. If an Orlicz space is considered with the Luxemburg norm, then the set is the algebraic sum of and . Each nonseparable rearrangement-invariant space such that is shown to contain an asymptotically isometric copy of the space . Bibliography: 17 titles.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1070/SM9543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设为不可分离重排不变空间,设为中有界函数空间的闭包。正交于的元素,即,对于每个元素,都研究了这样的元素。讨论了在Marcinkiewicz空间或Orlicz空间中正交元素集的特征。如果一个Orlicz空间具有卢森堡范数,则该集合是和的代数和。每一个不可分离的重排不变空间,证明包含该空间的渐近等距副本。参考书目:17篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Orthogonality in nonseparable rearrangement-invariant spaces
Let be a nonseparable rearrangement-invariant space and let be the closure of the space of bounded functions in . Elements of orthogonal to , that is, elements , , such that for each , are investigated. The set of orthogonal elements is characterized in the case when is a Marcinkiewicz or an Orlicz space. If an Orlicz space is considered with the Luxemburg norm, then the set is the algebraic sum of and . Each nonseparable rearrangement-invariant space such that is shown to contain an asymptotically isometric copy of the space . Bibliography: 17 titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信