黎曼流形的拉普拉斯谱和拓扑不变量界的估计

IF 0.8 4区 数学 Q2 MATHEMATICS
Luca Sabatini
{"title":"黎曼流形的拉普拉斯谱和拓扑不变量界的估计","authors":"Luca Sabatini","doi":"10.2478/auom-2020-0012","DOIUrl":null,"url":null,"abstract":"Abstract We present some estimate of the Laplacian Spectrum and of Topological Invariants for Riemannian manifold with pinched sectional curvature and with non-empty and non-convex boundary with finite injectivity radius. These estimates do not depend directly on the the lower bound of the boundary injectivity radius but on the bounds of the curvatures of the manifold and its boundary.","PeriodicalId":55522,"journal":{"name":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","volume":"34 1","pages":"165 - 179"},"PeriodicalIF":0.8000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimates of the Laplacian Spectrum and Bounds of Topological Invariants for Riemannian Manifolds with Boundary II\",\"authors\":\"Luca Sabatini\",\"doi\":\"10.2478/auom-2020-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present some estimate of the Laplacian Spectrum and of Topological Invariants for Riemannian manifold with pinched sectional curvature and with non-empty and non-convex boundary with finite injectivity radius. These estimates do not depend directly on the the lower bound of the boundary injectivity radius but on the bounds of the curvatures of the manifold and its boundary.\",\"PeriodicalId\":55522,\"journal\":{\"name\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"volume\":\"34 1\",\"pages\":\"165 - 179\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2478/auom-2020-0012\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analele Stiintifice Ale Universitatii Ovidius Constanta-Seria Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2478/auom-2020-0012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文给出了具有压缩截面曲率且具有有限注入半径的非空非凸边界的黎曼流形的拉普拉斯谱和拓扑不变量的一些估计。这些估计并不直接依赖于边界注入半径的下界,而是依赖于流形及其边界的曲率边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates of the Laplacian Spectrum and Bounds of Topological Invariants for Riemannian Manifolds with Boundary II
Abstract We present some estimate of the Laplacian Spectrum and of Topological Invariants for Riemannian manifold with pinched sectional curvature and with non-empty and non-convex boundary with finite injectivity radius. These estimates do not depend directly on the the lower bound of the boundary injectivity radius but on the bounds of the curvatures of the manifold and its boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
15
审稿时长
6-12 weeks
期刊介绍: This journal is founded by Mirela Stefanescu and Silviu Sburlan in 1993 and is devoted to pure and applied mathematics. Published by Faculty of Mathematics and Computer Science, Ovidius University, Constanta, Romania.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信