第二类Volterra积分方程的逐次逼近(Neumann级数)方法

IF 0.2 Q4 MATHEMATICS
Teshome Bayleyegn Matebie
{"title":"第二类Volterra积分方程的逐次逼近(Neumann级数)方法","authors":"Teshome Bayleyegn Matebie","doi":"10.11648/J.PAMJ.20160506.16","DOIUrl":null,"url":null,"abstract":"In this paper, the solving of a class of both linear and nonlinear Volterra integral equations of the first kind is investigated. Here, by converting integral equation of the first kind to a linear equation of the second kind and the ordinary differential equation to integral equation we are going to solve the equation easily. The method of successive approximations (Neumann’s series) is applied to solve linear and nonlinear Volterra integral equation of the second kind. Some examples are presented to illustrate methods.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2016-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Method of Successive Approximations (Neumann’s Series) of Volterra Integral Equation of the Second Kind\",\"authors\":\"Teshome Bayleyegn Matebie\",\"doi\":\"10.11648/J.PAMJ.20160506.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the solving of a class of both linear and nonlinear Volterra integral equations of the first kind is investigated. Here, by converting integral equation of the first kind to a linear equation of the second kind and the ordinary differential equation to integral equation we are going to solve the equation easily. The method of successive approximations (Neumann’s series) is applied to solve linear and nonlinear Volterra integral equation of the second kind. Some examples are presented to illustrate methods.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20160506.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20160506.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类线性和非线性第一类Volterra积分方程的求解问题。这里,通过将第一类积分方程转化为第二类线性方程将常微分方程转化为积分方程我们可以很容易地解出方程。采用逐次逼近法(Neumann级数法)求解第二类线性和非线性Volterra积分方程。给出了一些例子来说明方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Method of Successive Approximations (Neumann’s Series) of Volterra Integral Equation of the Second Kind
In this paper, the solving of a class of both linear and nonlinear Volterra integral equations of the first kind is investigated. Here, by converting integral equation of the first kind to a linear equation of the second kind and the ordinary differential equation to integral equation we are going to solve the equation easily. The method of successive approximations (Neumann’s series) is applied to solve linear and nonlinear Volterra integral equation of the second kind. Some examples are presented to illustrate methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信