存在基因型错误的四种启发式全兄弟姐妹重构问题的准确性

D. Konovalov
{"title":"存在基因型错误的四种启发式全兄弟姐妹重构问题的准确性","authors":"D. Konovalov","doi":"10.1142/9781860947292_0004","DOIUrl":null,"url":null,"abstract":"The full sibship reconstruction (FSR) problem is the problem of inferring all groups of full siblings from a given population sample using genetic marker data without parental information. The FSR problem remains a significant challenge for computational biology, since an exact solution for the problem has not been found. The new algorithm, named SIMPSON-assisted Descending Ratio (SDR), is devised combining a new Simpson index based O(n2) algorithm (MS2) and the existing Descending Ratio (DR) algorithm. The SDR algorithm outperforms the SIMPSON, MS2, and DR algorithms in accuracy and robustness when tested on a variety of sample family structures. The accuracy error is measured as the percentage of incorrectly assigned individuals. The robustness of the FSR algorithms is assessed by simulating a 2% mutation rate per locus (a 1% rate per allele).","PeriodicalId":74513,"journal":{"name":"Proceedings of the ... Asia-Pacific bioinformatics conference","volume":"109 1","pages":"7-16"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Accuracy of Four Heuristics for the Full Sibship Reconstruction Problem in the Presence of Genotype Errors\",\"authors\":\"D. Konovalov\",\"doi\":\"10.1142/9781860947292_0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The full sibship reconstruction (FSR) problem is the problem of inferring all groups of full siblings from a given population sample using genetic marker data without parental information. The FSR problem remains a significant challenge for computational biology, since an exact solution for the problem has not been found. The new algorithm, named SIMPSON-assisted Descending Ratio (SDR), is devised combining a new Simpson index based O(n2) algorithm (MS2) and the existing Descending Ratio (DR) algorithm. The SDR algorithm outperforms the SIMPSON, MS2, and DR algorithms in accuracy and robustness when tested on a variety of sample family structures. The accuracy error is measured as the percentage of incorrectly assigned individuals. The robustness of the FSR algorithms is assessed by simulating a 2% mutation rate per locus (a 1% rate per allele).\",\"PeriodicalId\":74513,\"journal\":{\"name\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"volume\":\"109 1\",\"pages\":\"7-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... Asia-Pacific bioinformatics conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781860947292_0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... Asia-Pacific bioinformatics conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781860947292_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

全兄弟姐妹重建(FSR)问题是在没有父母信息的情况下,利用遗传标记数据从给定的群体样本中推断出所有全兄弟姐妹群体的问题。FSR问题仍然是计算生物学的一个重大挑战,因为这个问题的精确解决方案还没有找到。该算法将基于辛普森指数的O(n2)算法(MS2)和现有的降序比(DR)算法相结合,设计了新的辛普森辅助降序比(SDR)算法。当在各种样本族结构上进行测试时,SDR算法在准确性和鲁棒性方面优于SIMPSON, MS2和DR算法。准确度误差是以不正确分配个体的百分比来衡量的。FSR算法的稳健性通过模拟每个位点2%的突变率(每个等位基因1%的突变率)来评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy of Four Heuristics for the Full Sibship Reconstruction Problem in the Presence of Genotype Errors
The full sibship reconstruction (FSR) problem is the problem of inferring all groups of full siblings from a given population sample using genetic marker data without parental information. The FSR problem remains a significant challenge for computational biology, since an exact solution for the problem has not been found. The new algorithm, named SIMPSON-assisted Descending Ratio (SDR), is devised combining a new Simpson index based O(n2) algorithm (MS2) and the existing Descending Ratio (DR) algorithm. The SDR algorithm outperforms the SIMPSON, MS2, and DR algorithms in accuracy and robustness when tested on a variety of sample family structures. The accuracy error is measured as the percentage of incorrectly assigned individuals. The robustness of the FSR algorithms is assessed by simulating a 2% mutation rate per locus (a 1% rate per allele).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信