Seftina Diyah Miasary
{"title":"PENERAPAN VECTOR AUTOREGRESSIVE (VAR) DALAM MEMPREDIKSI RETURN SAHAM DI INDONESIA","authors":"Seftina Diyah Miasary","doi":"10.25134/jes-mat.v8i2.6225","DOIUrl":null,"url":null,"abstract":"The rate of return (return) and risk are inseparable in investing activities. One equilibrium model that describes the relationship between return and risk assumes that the expected return is influenced by more than one macroeconomic factor. Furthermore, the causal relationship between stock returns and macroeconomic factor returns was analyzed using VAR. The application of VAR in this study is to predict stock returns through the stages of checking data stationarity, determining the optimal lag length, testing Granger causality between variables, estimating VAR model parameters and Portmanteau diagnostic tests, and predicting stock returns. The results show that the VAR (1) model is the most appropriate model to describe the relationship between stock returns and macroeconomic factor returns with a significant model owned by BBCA, ICBP, INTP, KLBF, and SMGR stocks. Furthermore, the VAR (1) model is used to predict the five stock returns. The prediction results show that INTP's stock returns are negative while the returns of the other four stocks are positive. This shows that INTP shares experienced a capital loss, while the stock returns of BBCA, ICBP, KLBF, and SMGR experienced capital gains","PeriodicalId":33723,"journal":{"name":"Edu Sains Jurnal Pendidikan Sains dan Matematika","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Edu Sains Jurnal Pendidikan Sains dan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25134/jes-mat.v8i2.6225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在投资活动中,回报率与风险是密不可分的。一个描述收益与风险关系的均衡模型假设预期收益受到不止一个宏观经济因素的影响。在此基础上,运用VAR分析股票收益与宏观经济因素收益之间的因果关系,通过检验数据平稳性、确定最优滞后长度、检验变量间格兰杰因果关系、估计VAR模型参数和组合诊断检验、预测股票收益等阶段来预测股票收益。结果表明,VAR(1)模型是最适合描述股票收益与宏观经济因素收益关系的模型,BBCA、ICBP、INTP、KLBF和SMGR股票均具有显著模型。在此基础上,利用VAR(1)模型对5只股票的收益进行预测。预测结果显示,INTP的股票收益为负,而其他四只股票的收益为正。这表明INTP股票经历了资本损失,而BBCA, ICBP, KLBF和SMGR的股票收益经历了资本收益
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN VECTOR AUTOREGRESSIVE (VAR) DALAM MEMPREDIKSI RETURN SAHAM DI INDONESIA
The rate of return (return) and risk are inseparable in investing activities. One equilibrium model that describes the relationship between return and risk assumes that the expected return is influenced by more than one macroeconomic factor. Furthermore, the causal relationship between stock returns and macroeconomic factor returns was analyzed using VAR. The application of VAR in this study is to predict stock returns through the stages of checking data stationarity, determining the optimal lag length, testing Granger causality between variables, estimating VAR model parameters and Portmanteau diagnostic tests, and predicting stock returns. The results show that the VAR (1) model is the most appropriate model to describe the relationship between stock returns and macroeconomic factor returns with a significant model owned by BBCA, ICBP, INTP, KLBF, and SMGR stocks. Furthermore, the VAR (1) model is used to predict the five stock returns. The prediction results show that INTP's stock returns are negative while the returns of the other four stocks are positive. This shows that INTP shares experienced a capital loss, while the stock returns of BBCA, ICBP, KLBF, and SMGR experienced capital gains
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信