情绪识别调节智能系统的行为

A. Smailagic, D. Siewiorek, A. Rudnicky, Sandeep Nallan Chakravarthula, Anshuman Kar, Nivedita Jagdale, Saksham Gautam, Rohit Vijayaraghavan, S. Jagtap
{"title":"情绪识别调节智能系统的行为","authors":"A. Smailagic, D. Siewiorek, A. Rudnicky, Sandeep Nallan Chakravarthula, Anshuman Kar, Nivedita Jagdale, Saksham Gautam, Rohit Vijayaraghavan, S. Jagtap","doi":"10.1109/ISM.2013.72","DOIUrl":null,"url":null,"abstract":"The paper presents an audio-based emotion recognition system that is able to classify emotions as anger, fear, happy, neutral, sadness or disgust in real time. We use the virtual coach as an application example of how emotion recognition can be used to modulate intelligent systems' behavior. A novel minimum-error feature removal mechanism to reduce bandwidth and increase accuracy of our emotion recognition system has been introduced. A two-stage hierarchical classification approach along with a One-Against-All (OAA) framework are used. We obtained an average accuracy of 82.07% using the OAA approach, and 87.70% with a two-stage hierarchical approach, by pruning the feature set and using Support Vector Machines (SVMs) for classification.","PeriodicalId":6311,"journal":{"name":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","volume":"8 1","pages":"378-383"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Emotion Recognition Modulating the Behavior of Intelligent Systems\",\"authors\":\"A. Smailagic, D. Siewiorek, A. Rudnicky, Sandeep Nallan Chakravarthula, Anshuman Kar, Nivedita Jagdale, Saksham Gautam, Rohit Vijayaraghavan, S. Jagtap\",\"doi\":\"10.1109/ISM.2013.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an audio-based emotion recognition system that is able to classify emotions as anger, fear, happy, neutral, sadness or disgust in real time. We use the virtual coach as an application example of how emotion recognition can be used to modulate intelligent systems' behavior. A novel minimum-error feature removal mechanism to reduce bandwidth and increase accuracy of our emotion recognition system has been introduced. A two-stage hierarchical classification approach along with a One-Against-All (OAA) framework are used. We obtained an average accuracy of 82.07% using the OAA approach, and 87.70% with a two-stage hierarchical approach, by pruning the feature set and using Support Vector Machines (SVMs) for classification.\",\"PeriodicalId\":6311,\"journal\":{\"name\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"volume\":\"8 1\",\"pages\":\"378-383\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2013.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2013.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于音频的情绪识别系统,该系统能够实时地将情绪分为愤怒、恐惧、快乐、中性、悲伤或厌恶。我们使用虚拟教练作为情感识别如何用于调节智能系统行为的应用示例。介绍了一种新的最小误差特征去除机制,以减少带宽和提高我们的情绪识别系统的准确性。使用了两阶段分层分类方法以及“一对全”(One-Against-All, OAA)框架。通过修剪特征集并使用支持向量机(svm)进行分类,使用OAA方法获得了82.07%的平均准确率,使用两阶段分层方法获得了87.70%的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emotion Recognition Modulating the Behavior of Intelligent Systems
The paper presents an audio-based emotion recognition system that is able to classify emotions as anger, fear, happy, neutral, sadness or disgust in real time. We use the virtual coach as an application example of how emotion recognition can be used to modulate intelligent systems' behavior. A novel minimum-error feature removal mechanism to reduce bandwidth and increase accuracy of our emotion recognition system has been introduced. A two-stage hierarchical classification approach along with a One-Against-All (OAA) framework are used. We obtained an average accuracy of 82.07% using the OAA approach, and 87.70% with a two-stage hierarchical approach, by pruning the feature set and using Support Vector Machines (SVMs) for classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信