条形归纳法与建构型理论是相容的

Vincent Rahli, M. Bickford, L. Cohen, R. Constable
{"title":"条形归纳法与建构型理论是相容的","authors":"Vincent Rahli, M. Bickford, L. Cohen, R. Constable","doi":"10.1145/3305261","DOIUrl":null,"url":null,"abstract":"Powerful yet effective induction principles play an important role in computing, being a paramount component of programming languages, automated reasoning, and program verification systems. The Bar Induction (BI) principle is a fundamental concept of intuitionism, which is equivalent to the standard principle of transfinite induction. In this work, we investigate the compatibility of several variants of BI with Constructive Type Theory (CTT), a dependent type theory in the spirit of Martin-Löf’s extensional theory. We first show that CTT is compatible with a BI principle for sequences of numbers. Then, we establish the compatibility of CTT with a more general BI principle for sequences of name-free closed terms. The formalization of the latter principle within the theory involved enriching CTT’s term syntax with a limit constructor and showing that consistency is preserved. Furthermore, we provide novel insights regarding BI, such as the non-truncated version of BI on monotone bars being intuitionistically false. These enhancements are carried out formally using the Nuprl proof assistant that implements CTT and the formalization of CTT within the Coq proof assistant presented in previous works.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"1 1","pages":"1 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bar Induction is Compatible with Constructive Type Theory\",\"authors\":\"Vincent Rahli, M. Bickford, L. Cohen, R. Constable\",\"doi\":\"10.1145/3305261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Powerful yet effective induction principles play an important role in computing, being a paramount component of programming languages, automated reasoning, and program verification systems. The Bar Induction (BI) principle is a fundamental concept of intuitionism, which is equivalent to the standard principle of transfinite induction. In this work, we investigate the compatibility of several variants of BI with Constructive Type Theory (CTT), a dependent type theory in the spirit of Martin-Löf’s extensional theory. We first show that CTT is compatible with a BI principle for sequences of numbers. Then, we establish the compatibility of CTT with a more general BI principle for sequences of name-free closed terms. The formalization of the latter principle within the theory involved enriching CTT’s term syntax with a limit constructor and showing that consistency is preserved. Furthermore, we provide novel insights regarding BI, such as the non-truncated version of BI on monotone bars being intuitionistically false. These enhancements are carried out formally using the Nuprl proof assistant that implements CTT and the formalization of CTT within the Coq proof assistant presented in previous works.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"1 1\",\"pages\":\"1 - 35\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3305261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3305261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

强大而有效的归纳原理在计算中扮演着重要的角色,是编程语言、自动推理和程序验证系统的重要组成部分。条形归纳法(BI)原理是直觉主义的一个基本概念,相当于标准的超限归纳法原理。在这项工作中,我们研究了几种BI变体与构建类型理论(CTT)的兼容性,构建类型理论是Martin-Löf的外延理论精神中的一种依赖类型理论。我们首先证明了CTT与数字序列的BI原理是兼容的。然后,我们建立了CTT与无名称闭项序列的更一般的BI原则的兼容性。在该理论中,后一原则的形式化涉及到用极限构造函数丰富CTT的术语语法,并表明保持了一致性。此外,我们提供了关于BI的新见解,例如单调条上的BI的非截断版本在直觉上是错误的。这些增强是使用实现CTT的Nuprl证明助手正式执行的,并在前面的作品中介绍的Coq证明助手中形式化CTT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bar Induction is Compatible with Constructive Type Theory
Powerful yet effective induction principles play an important role in computing, being a paramount component of programming languages, automated reasoning, and program verification systems. The Bar Induction (BI) principle is a fundamental concept of intuitionism, which is equivalent to the standard principle of transfinite induction. In this work, we investigate the compatibility of several variants of BI with Constructive Type Theory (CTT), a dependent type theory in the spirit of Martin-Löf’s extensional theory. We first show that CTT is compatible with a BI principle for sequences of numbers. Then, we establish the compatibility of CTT with a more general BI principle for sequences of name-free closed terms. The formalization of the latter principle within the theory involved enriching CTT’s term syntax with a limit constructor and showing that consistency is preserved. Furthermore, we provide novel insights regarding BI, such as the non-truncated version of BI on monotone bars being intuitionistically false. These enhancements are carried out formally using the Nuprl proof assistant that implements CTT and the formalization of CTT within the Coq proof assistant presented in previous works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信