使用交换网络的随机排列

A. Czumaj
{"title":"使用交换网络的随机排列","authors":"A. Czumaj","doi":"10.1145/2746539.2746629","DOIUrl":null,"url":null,"abstract":"We consider the problem of designing a simple, oblivious scheme to generate (almost) random permutations. We use the concept of switching networks and show that almost every switching network of logarithmic depth can be used to almost randomly permute any set of (1-ε) n elements with any ε > 0 (that is, gives an almost (1-ε) n$-wise independent permutation). Furthermore, we show that the result still holds for every switching network of logarithmic depth that has some special expansion properties, leading to an explicit construction of such networks. Our result can be also extended to an explicit construction of a switching network of depth O(log2n) and with O(n log n) switches that almost randomly permutes any set of n elements. We also discuss basic applications of these results in cryptography. Our results are obtained using a non-trivial coupling approach to study mixing times of Markov chains which allows us to reduce the problem to some random walk-like problem on expanders.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Random Permutations using Switching Networks\",\"authors\":\"A. Czumaj\",\"doi\":\"10.1145/2746539.2746629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of designing a simple, oblivious scheme to generate (almost) random permutations. We use the concept of switching networks and show that almost every switching network of logarithmic depth can be used to almost randomly permute any set of (1-ε) n elements with any ε > 0 (that is, gives an almost (1-ε) n$-wise independent permutation). Furthermore, we show that the result still holds for every switching network of logarithmic depth that has some special expansion properties, leading to an explicit construction of such networks. Our result can be also extended to an explicit construction of a switching network of depth O(log2n) and with O(n log n) switches that almost randomly permutes any set of n elements. We also discuss basic applications of these results in cryptography. Our results are obtained using a non-trivial coupling approach to study mixing times of Markov chains which allows us to reduce the problem to some random walk-like problem on expanders.\",\"PeriodicalId\":20566,\"journal\":{\"name\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2746539.2746629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们考虑的问题是设计一个简单的,不经意的方案,以产生(几乎)随机排列。我们使用交换网络的概念,并证明了几乎每一个对数深度的交换网络都可以用来几乎随机地排列任何ε > 0的(1-ε) n个元素的集合(即给出了一个几乎(1-ε) n$明智的独立排列)。此外,我们证明了该结果仍然适用于具有某些特殊扩展性质的对数深度交换网络,从而导致此类网络的显式构造。我们的结果也可以推广到一个深度为O(log2n)且具有O(n log n)个开关的交换网络的显式构造,该交换网络几乎随机地排列任何n个元素的集合。我们还讨论了这些结果在密码学中的基本应用。用非平凡耦合方法研究了马尔可夫链的混合时间,从而使问题简化为展开式上的随机行走问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Permutations using Switching Networks
We consider the problem of designing a simple, oblivious scheme to generate (almost) random permutations. We use the concept of switching networks and show that almost every switching network of logarithmic depth can be used to almost randomly permute any set of (1-ε) n elements with any ε > 0 (that is, gives an almost (1-ε) n$-wise independent permutation). Furthermore, we show that the result still holds for every switching network of logarithmic depth that has some special expansion properties, leading to an explicit construction of such networks. Our result can be also extended to an explicit construction of a switching network of depth O(log2n) and with O(n log n) switches that almost randomly permutes any set of n elements. We also discuss basic applications of these results in cryptography. Our results are obtained using a non-trivial coupling approach to study mixing times of Markov chains which allows us to reduce the problem to some random walk-like problem on expanders.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信