使用匹配方法来解释挪威初级保健小组(PCT)试点的选择偏差

Øyvind Snilsberg
{"title":"使用匹配方法来解释挪威初级保健小组(PCT)试点的选择偏差","authors":"Øyvind Snilsberg","doi":"10.5617/njhe.8562","DOIUrl":null,"url":null,"abstract":"Norway is piloting team-based primary care delivery models: Honorarmodellen (HM) and Driftstilskuddsmodellen (DM). In addition to organisational changes, the DM transforms provider payment, which seems to attract specific practices. This, coupled with the small number of DM practices, makes it difficult to produce credible evidence regarding the model and its effects on health system performance. I examine whether matching methods—specifically, coarsened exact matching, propensity score matching, and propensity score weighting—can improve evaluation in this demanding situation. As in previous studies on the small sample performance of matching methods, I find no clear best method. This suggests using propensity score weighting, which does not discard data. In the final section of the article, I offer additional advice to help improve the evaluation in similar situations.","PeriodicalId":30931,"journal":{"name":"Nordic Journal of Health Economics","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using matching methods to account for selection bias in Norway’s Primary Care Teams (PCT) pilot\",\"authors\":\"Øyvind Snilsberg\",\"doi\":\"10.5617/njhe.8562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Norway is piloting team-based primary care delivery models: Honorarmodellen (HM) and Driftstilskuddsmodellen (DM). In addition to organisational changes, the DM transforms provider payment, which seems to attract specific practices. This, coupled with the small number of DM practices, makes it difficult to produce credible evidence regarding the model and its effects on health system performance. I examine whether matching methods—specifically, coarsened exact matching, propensity score matching, and propensity score weighting—can improve evaluation in this demanding situation. As in previous studies on the small sample performance of matching methods, I find no clear best method. This suggests using propensity score weighting, which does not discard data. In the final section of the article, I offer additional advice to help improve the evaluation in similar situations.\",\"PeriodicalId\":30931,\"journal\":{\"name\":\"Nordic Journal of Health Economics\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nordic Journal of Health Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5617/njhe.8562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nordic Journal of Health Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5617/njhe.8562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

挪威正在试点以团队为基础的初级保健服务模式:荣誉医疗保健(HM)和流动医疗保健(DM)。除了组织变革之外,DM还改变了提供者的支付方式,这似乎吸引了一些特定的做法。这一点,再加上DM实践数量较少,使得很难就该模式及其对卫生系统绩效的影响提出可信的证据。我研究了匹配方法——特别是粗精确匹配、倾向得分匹配和倾向得分加权——是否可以在这种苛刻的情况下改进评估。与之前对匹配方法小样本性能的研究一样,我没有找到明确的最佳方法。这建议使用倾向得分加权,它不会丢弃数据。在本文的最后一节,我将提供额外的建议,以帮助改进类似情况下的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using matching methods to account for selection bias in Norway’s Primary Care Teams (PCT) pilot
Norway is piloting team-based primary care delivery models: Honorarmodellen (HM) and Driftstilskuddsmodellen (DM). In addition to organisational changes, the DM transforms provider payment, which seems to attract specific practices. This, coupled with the small number of DM practices, makes it difficult to produce credible evidence regarding the model and its effects on health system performance. I examine whether matching methods—specifically, coarsened exact matching, propensity score matching, and propensity score weighting—can improve evaluation in this demanding situation. As in previous studies on the small sample performance of matching methods, I find no clear best method. This suggests using propensity score weighting, which does not discard data. In the final section of the article, I offer additional advice to help improve the evaluation in similar situations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
51 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信