关于循环莱布尼兹代数的导数

IF 1 Q1 MATHEMATICS
M. Semko, L. Skaskiv, O. A. Yarovaya
{"title":"关于循环莱布尼兹代数的导数","authors":"M. Semko, L. Skaskiv, O. A. Yarovaya","doi":"10.15330/cmp.14.2.345-353","DOIUrl":null,"url":null,"abstract":"Let $L$ be an algebra over a field $F$. Then $L$ is called a left Leibniz algebra, if its multiplication operation $[-,-]$ additionally satisfies the so-called left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\\in L$. A linear transformation $f$ of a Leibniz algebra $L$ is called a derivation of an algebra $L$, if $f([a,b])=[f(a),b]+[a,f(b)]$ for all elements $a,b\\in L$. It is well known that the set of all derivations $\\mathrm{Der}(L)$ of a Leibniz algebra $L$ is a subalgebra of the Lie algebra $\\mathrm{End}_{F}(L)$ of all linear transformations of an algebra $L$. The algebras of derivations of Leibniz algebras play an important role in the study of structure of Leibniz algebras. Their role is similar to that played by groups of automorphisms in the study of group structure. \nIn this paper, a complete description of the algebra of derivations of nilpotent cyclic Leibniz algebra is obtained. In particular, it was proved that this algebra is metabelian and supersoluble Lie algebra, and its dimension is equal to the dimension of an algebra $L$.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the derivations of cyclic Leibniz algebras\",\"authors\":\"M. Semko, L. Skaskiv, O. A. Yarovaya\",\"doi\":\"10.15330/cmp.14.2.345-353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $L$ be an algebra over a field $F$. Then $L$ is called a left Leibniz algebra, if its multiplication operation $[-,-]$ additionally satisfies the so-called left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\\\\in L$. A linear transformation $f$ of a Leibniz algebra $L$ is called a derivation of an algebra $L$, if $f([a,b])=[f(a),b]+[a,f(b)]$ for all elements $a,b\\\\in L$. It is well known that the set of all derivations $\\\\mathrm{Der}(L)$ of a Leibniz algebra $L$ is a subalgebra of the Lie algebra $\\\\mathrm{End}_{F}(L)$ of all linear transformations of an algebra $L$. The algebras of derivations of Leibniz algebras play an important role in the study of structure of Leibniz algebras. Their role is similar to that played by groups of automorphisms in the study of group structure. \\nIn this paper, a complete description of the algebra of derivations of nilpotent cyclic Leibniz algebra is obtained. In particular, it was proved that this algebra is metabelian and supersoluble Lie algebra, and its dimension is equal to the dimension of an algebra $L$.\",\"PeriodicalId\":42912,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.14.2.345-353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.2.345-353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

设L是域F上的一个代数。那么$L$被称为左莱布尼茨代数,如果它的乘法运算$[-,-]$另外满足所谓的左莱布尼茨恒等式:$[[a,b],c]=[a,[b,c]]-[b,[a,c]]$对于L$中的所有元素$a,b,c\。莱布尼兹代数$L$的线性变换$f$称为代数$L$的派生,如果$f([A,b])=[f(A),b]+[A,f(b)]$对于L$中的所有元素$ A,b\。众所周知,莱布尼兹代数$L$的所有派生$\mathrm{Der}(L)$的集合是代数$L$的所有线性变换的李代数$\mathrm{End}_{F}(L)$的子代数。莱布尼兹代数的导数代数在研究莱布尼兹代数的结构中起着重要的作用。它们的作用类似于自同构群在群体结构研究中的作用。本文给出了幂零循环莱布尼兹代数的导数代数的完整描述。特别地,证明了该代数是一个亚可溶的超溶李代数,其维数等于一个代数的维数$L$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the derivations of cyclic Leibniz algebras
Let $L$ be an algebra over a field $F$. Then $L$ is called a left Leibniz algebra, if its multiplication operation $[-,-]$ additionally satisfies the so-called left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$. A linear transformation $f$ of a Leibniz algebra $L$ is called a derivation of an algebra $L$, if $f([a,b])=[f(a),b]+[a,f(b)]$ for all elements $a,b\in L$. It is well known that the set of all derivations $\mathrm{Der}(L)$ of a Leibniz algebra $L$ is a subalgebra of the Lie algebra $\mathrm{End}_{F}(L)$ of all linear transformations of an algebra $L$. The algebras of derivations of Leibniz algebras play an important role in the study of structure of Leibniz algebras. Their role is similar to that played by groups of automorphisms in the study of group structure. In this paper, a complete description of the algebra of derivations of nilpotent cyclic Leibniz algebra is obtained. In particular, it was proved that this algebra is metabelian and supersoluble Lie algebra, and its dimension is equal to the dimension of an algebra $L$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信