三角测量格拉斯曼人需要多少个简单函数?

Dejan Govc, W. Marzantowicz, Petar Pavešić
{"title":"三角测量格拉斯曼人需要多少个简单函数?","authors":"Dejan Govc, W. Marzantowicz, Petar Pavešić","doi":"10.12775/tmna.2020.027","DOIUrl":null,"url":null,"abstract":"We compute a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_k(\\mathbb{R}^n)$. In particular, we show that the number of top-dimensional simplices grows exponentially with $n$. More precise estimates are given for $k=2,3,4$. Our method can be used to estimate the minimal size of triangulations for other spaces, like Lie groups, flag manifolds, Stiefel manifolds etc.","PeriodicalId":8433,"journal":{"name":"arXiv: Algebraic Topology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"How many simplices are needed to triangulate a Grassmannian?\",\"authors\":\"Dejan Govc, W. Marzantowicz, Petar Pavešić\",\"doi\":\"10.12775/tmna.2020.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_k(\\\\mathbb{R}^n)$. In particular, we show that the number of top-dimensional simplices grows exponentially with $n$. More precise estimates are given for $k=2,3,4$. Our method can be used to estimate the minimal size of triangulations for other spaces, like Lie groups, flag manifolds, Stiefel manifolds etc.\",\"PeriodicalId\":8433,\"journal\":{\"name\":\"arXiv: Algebraic Topology\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2020.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12775/tmna.2020.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们计算三角化格拉斯曼流形$G_k(\mathbb{R}^n)$所需的简化数的下界。特别地,我们证明了顶维简单函数的数量随着n的增长呈指数增长。对于k=2,3,4,给出了更精确的估计。我们的方法可以用来估计其他空间的三角剖分的最小尺寸,如李群、flag流形、Stiefel流形等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How many simplices are needed to triangulate a Grassmannian?
We compute a lower bound for the number of simplices that are needed to triangulate the Grassmann manifold $G_k(\mathbb{R}^n)$. In particular, we show that the number of top-dimensional simplices grows exponentially with $n$. More precise estimates are given for $k=2,3,4$. Our method can be used to estimate the minimal size of triangulations for other spaces, like Lie groups, flag manifolds, Stiefel manifolds etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信