使用内核函数检测隐藏进程

Yacine Hebbal, S. Laniepce, Jean-Marc Menaud
{"title":"使用内核函数检测隐藏进程","authors":"Yacine Hebbal, S. Laniepce, Jean-Marc Menaud","doi":"10.1109/DESEC.2017.8073805","DOIUrl":null,"url":null,"abstract":"Process hiding is a common attack used by long-lived malicious processes to conceal their presence from security and administration tools. Multiple techniques based on Virtual Machine Introspection (VMI) were proposed to detect the presence of hidden running process in virtual machines. However, existing techniques are not practical for real world cloud environments as they suffer from evasion attacks or use manually provided and too OS-specific information. In this paper we present HPD, a VMI-based Hidden Process Detector that instruments guest OS kernel functions to automatically and reliably detect and terminate execution of hidden processes. We designed and implemented a prototype of HPD on KVM hypervisor. Its evaluation on multiple Linux kernels shows that from the hypervisor level, HPD detects successfully the presence of hidden running processes and safely terminate their execution.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"203 1","pages":"138-145"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hidden process detection using kernel functions instrumentation\",\"authors\":\"Yacine Hebbal, S. Laniepce, Jean-Marc Menaud\",\"doi\":\"10.1109/DESEC.2017.8073805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Process hiding is a common attack used by long-lived malicious processes to conceal their presence from security and administration tools. Multiple techniques based on Virtual Machine Introspection (VMI) were proposed to detect the presence of hidden running process in virtual machines. However, existing techniques are not practical for real world cloud environments as they suffer from evasion attacks or use manually provided and too OS-specific information. In this paper we present HPD, a VMI-based Hidden Process Detector that instruments guest OS kernel functions to automatically and reliably detect and terminate execution of hidden processes. We designed and implemented a prototype of HPD on KVM hypervisor. Its evaluation on multiple Linux kernels shows that from the hypervisor level, HPD detects successfully the presence of hidden running processes and safely terminate their execution.\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"203 1\",\"pages\":\"138-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DESEC.2017.8073805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

进程隐藏是长期存在的恶意进程用来向安全和管理工具隐藏其存在的一种常见攻击。提出了基于虚拟机自省(VMI)的多种技术来检测虚拟机中是否存在隐藏运行进程。然而,现有的技术并不适用于现实世界的云环境,因为它们容易受到逃避攻击或使用手动提供的过多的特定于操作系统的信息。在本文中,我们提出了HPD,一个基于vmi的隐藏进程检测器,它检测来宾操作系统内核函数来自动可靠地检测和终止隐藏进程的执行。我们在KVM管理程序上设计并实现了一个HPD原型。它在多个Linux内核上的评估表明,从管理程序级别来看,HPD成功地检测到隐藏运行进程的存在,并安全地终止它们的执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden process detection using kernel functions instrumentation
Process hiding is a common attack used by long-lived malicious processes to conceal their presence from security and administration tools. Multiple techniques based on Virtual Machine Introspection (VMI) were proposed to detect the presence of hidden running process in virtual machines. However, existing techniques are not practical for real world cloud environments as they suffer from evasion attacks or use manually provided and too OS-specific information. In this paper we present HPD, a VMI-based Hidden Process Detector that instruments guest OS kernel functions to automatically and reliably detect and terminate execution of hidden processes. We designed and implemented a prototype of HPD on KVM hypervisor. Its evaluation on multiple Linux kernels shows that from the hypervisor level, HPD detects successfully the presence of hidden running processes and safely terminate their execution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信