复型k -Pell数及其应用

IF 0.7 Q2 MATHEMATICS
Yeşim Aküzüm
{"title":"复型k -Pell数及其应用","authors":"Yeşim Aküzüm","doi":"10.1155/2023/6631659","DOIUrl":null,"url":null,"abstract":"<jats:p>In this study, a new sequence called the complex-type <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>k</mi>\n </math>\n </jats:inline-formula>-Pell number is defined. Also, we give properties of this sequence such as the generating matrix, the generating function, the combinatorial representations, the exponential representation, the sums, the permanental and determinantal representations, and the Binet formula. Then, we determine the periods of the recurrence sequence according to the modulo <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>υ</mi>\n </math>\n </jats:inline-formula> and produce cyclic groups with the help of the generating matrices of the sequence. We also get some findings about the ranks and periods of the complex-type <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <mi>k</mi>\n </math>\n </jats:inline-formula>-Pell sequence. Additionally, we create relations between the orders of the cyclic groups produced and the periods of the sequence. Then, this sequence is moved to groups and examined in detail in finite groups. As an application, we get the periods of the complex-type <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mn>2</mn>\n </math>\n </jats:inline-formula>-Pell numbers in the polyhedral groups <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi>υ</mi>\n <mo>,</mo>\n <mn>2,2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>υ</mi>\n <mo>,</mo>\n <mn>2</mn>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mn>2,2</mn>\n <mo>,</mo>\n <mi>υ</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> and the quaternion group <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <msub>\n <mrow>\n <mi>Q</mi>\n </mrow>\n <mrow>\n <msup>\n <mrow>\n <mn>2</mn>\n </mrow>\n <mrow>\n <mi>υ</mi>\n </mrow>\n </msup>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complex-Type <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>k</mi>\\n </math>-Pell Numbers and Their Applications\",\"authors\":\"Yeşim Aküzüm\",\"doi\":\"10.1155/2023/6631659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In this study, a new sequence called the complex-type <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>k</mi>\\n </math>\\n </jats:inline-formula>-Pell number is defined. Also, we give properties of this sequence such as the generating matrix, the generating function, the combinatorial representations, the exponential representation, the sums, the permanental and determinantal representations, and the Binet formula. Then, we determine the periods of the recurrence sequence according to the modulo <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>υ</mi>\\n </math>\\n </jats:inline-formula> and produce cyclic groups with the help of the generating matrices of the sequence. We also get some findings about the ranks and periods of the complex-type <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <mi>k</mi>\\n </math>\\n </jats:inline-formula>-Pell sequence. Additionally, we create relations between the orders of the cyclic groups produced and the periods of the sequence. Then, this sequence is moved to groups and examined in detail in finite groups. As an application, we get the periods of the complex-type <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mn>2</mn>\\n </math>\\n </jats:inline-formula>-Pell numbers in the polyhedral groups <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi>υ</mi>\\n <mo>,</mo>\\n <mn>2,2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>υ</mi>\\n <mo>,</mo>\\n <mn>2</mn>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mn>2,2</mn>\\n <mo>,</mo>\\n <mi>υ</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> and the quaternion group <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <msub>\\n <mrow>\\n <mi>Q</mi>\\n </mrow>\\n <mrow>\\n <msup>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n <mrow>\\n <mi>υ</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6631659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6631659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,定义了一个新的序列,称为复型k -Pell数。同时,给出了该序列的生成矩阵、生成函数、组合表示、指数表示、和、恒式和行列式表示以及Binet公式等性质。然后,我们根据模υ确定递归序列的周期,并利用递归序列的生成矩阵生成循环群。我们还得到了复型k -Pell序列的秩和周期的一些发现。此外,我们还建立了所生成的循环群的阶数与序列的周期之间的关系。然后,将这个序列移到群中,并在有限群中进行详细的检验。作为应用,我们得到了多面体群υ, 2,2,2, υ,2,和2,2,υ和四元数群q2υ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Complex-Type k -Pell Numbers and Their Applications
In this study, a new sequence called the complex-type k -Pell number is defined. Also, we give properties of this sequence such as the generating matrix, the generating function, the combinatorial representations, the exponential representation, the sums, the permanental and determinantal representations, and the Binet formula. Then, we determine the periods of the recurrence sequence according to the modulo υ and produce cyclic groups with the help of the generating matrices of the sequence. We also get some findings about the ranks and periods of the complex-type k -Pell sequence. Additionally, we create relations between the orders of the cyclic groups produced and the periods of the sequence. Then, this sequence is moved to groups and examined in detail in finite groups. As an application, we get the periods of the complex-type 2 -Pell numbers in the polyhedral groups υ , 2,2 , 2 , υ , 2 , and 2,2 , υ and the quaternion group Q 2 υ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信