有对合的实子集和和和

C. Bisi, G. Chiaselotti, T. Gentile
{"title":"有对合的实子集和和和","authors":"C. Bisi, G. Chiaselotti, T. Gentile","doi":"10.1142/s0218196722500060","DOIUrl":null,"url":null,"abstract":"In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"1 1","pages":"127-157"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real subset sums and posets with an involution\",\"authors\":\"C. Bisi, G. Chiaselotti, T. Gentile\",\"doi\":\"10.1142/s0218196722500060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"1 1\",\"pages\":\"127-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在抽象有序环境下的实子集组合问题。具体地说,设[Formula: see text]是一个有限偏序集,其中[Formula: see text]是一个顺序反转和对合映射,使得[Formula: see text]对于每个[Formula: see text]。设[公式:见文]是两个元素的布尔格,[公式:见文]是所有保序2值映射的族[公式:见文],使得[公式:见文]对于所有[公式:见文]都是[公式:见文]。在本文中,我们基于[公式:见文本]为[公式:见文本]的特定子集建立了一个族[公式:见文本],我们称之为[公式:见文本],并确定族[公式:见文本]和族[公式:见文本]之间的双射。在这样的双射中,[公式:见文]上的[公式:见文]-基[公式:见文]对应于一个映射[公式:见文],其[公式:见文]对[公式:见文]的限制是[公式:见文]上的最小2值部分映射,该映射在[公式:见文]中以[公式:见文]作为其唯一扩展。接下来,我们将展示每个[公式:见文]——基于[公式:见文]——如何在特定的环境中成为一个更大的线性不等式系统的一个子系统,其兼容性意味着整个系统的兼容性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real subset sums and posets with an involution
In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信