{"title":"有对合的实子集和和和","authors":"C. Bisi, G. Chiaselotti, T. Gentile","doi":"10.1142/s0218196722500060","DOIUrl":null,"url":null,"abstract":"In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.","PeriodicalId":13615,"journal":{"name":"Int. J. Algebra Comput.","volume":"1 1","pages":"127-157"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real subset sums and posets with an involution\",\"authors\":\"C. Bisi, G. Chiaselotti, T. Gentile\",\"doi\":\"10.1142/s0218196722500060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.\",\"PeriodicalId\":13615,\"journal\":{\"name\":\"Int. J. Algebra Comput.\",\"volume\":\"1 1\",\"pages\":\"127-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Algebra Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218196722500060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Algebra Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196722500060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了在抽象有序环境下的实子集组合问题。具体地说,设[Formula: see text]是一个有限偏序集,其中[Formula: see text]是一个顺序反转和对合映射,使得[Formula: see text]对于每个[Formula: see text]。设[公式:见文]是两个元素的布尔格,[公式:见文]是所有保序2值映射的族[公式:见文],使得[公式:见文]对于所有[公式:见文]都是[公式:见文]。在本文中,我们基于[公式:见文本]为[公式:见文本]的特定子集建立了一个族[公式:见文本],我们称之为[公式:见文本],并确定族[公式:见文本]和族[公式:见文本]之间的双射。在这样的双射中,[公式:见文]上的[公式:见文]-基[公式:见文]对应于一个映射[公式:见文],其[公式:见文]对[公式:见文]的限制是[公式:见文]上的最小2值部分映射,该映射在[公式:见文]中以[公式:见文]作为其唯一扩展。接下来,我们将展示每个[公式:见文]——基于[公式:见文]——如何在特定的环境中成为一个更大的线性不等式系统的一个子系统,其兼容性意味着整个系统的兼容性。
In this paper, we carry out in an abstract order context some real subset combinatorial problems. Specifically, let [Formula: see text] be a finite poset, where [Formula: see text] is an order-reversing and involutive map such that [Formula: see text] for each [Formula: see text]. Let [Formula: see text] be the Boolean lattice with two elements and [Formula: see text] the family of all the order-preserving 2-valued maps [Formula: see text] such that [Formula: see text] if [Formula: see text] for all [Formula: see text]. In this paper, we build a family [Formula: see text] of particular subsets of [Formula: see text], that we call [Formula: see text]-bases on [Formula: see text], and we determine a bijection between the family [Formula: see text] and the family [Formula: see text]. In such a bijection, a [Formula: see text]-basis [Formula: see text] on [Formula: see text] corresponds to a map [Formula: see text] whose restriction of [Formula: see text] to [Formula: see text] is the smallest 2-valued partial map on [Formula: see text] which has [Formula: see text] as its unique extension in [Formula: see text]. Next we show how each [Formula: see text]-basis on [Formula: see text] becomes, in a particular context, a sub-system of a larger system of linear inequalities, whose compatibility implies the compatibility of the whole system.