浅本体上查询重写的简洁性

S. Kikot, R. Kontchakov, V. Podolskii, M. Zakharyaschev
{"title":"浅本体上查询重写的简洁性","authors":"S. Kikot, R. Kontchakov, V. Podolskii, M. Zakharyaschev","doi":"10.1145/2603088.2603131","DOIUrl":null,"url":null,"abstract":"We investigate the succinctness problem for conjunctive query rewritings over OWL 2QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. We show that, over ontologies of depth 1, conjunctive queries have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can be superpolynomial. Over ontologies of depth 2, positive existential and nonrecursive datalog rewritings of conjunctive queries can suffer an exponential blowup, while first-order rewritings can be superpolynomial unless NP ⊆ P/poly. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and note that query entailment for such queries is fixed-parameter tractable.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"On the succinctness of query rewriting over shallow ontologies\",\"authors\":\"S. Kikot, R. Kontchakov, V. Podolskii, M. Zakharyaschev\",\"doi\":\"10.1145/2603088.2603131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the succinctness problem for conjunctive query rewritings over OWL 2QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. We show that, over ontologies of depth 1, conjunctive queries have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can be superpolynomial. Over ontologies of depth 2, positive existential and nonrecursive datalog rewritings of conjunctive queries can suffer an exponential blowup, while first-order rewritings can be superpolynomial unless NP ⊆ P/poly. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and note that query entailment for such queries is fixed-parameter tractable.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

利用超图程序计算布尔函数,研究了深度为1和2的owl2ql本体上连接查询重写的简洁性问题。得到了肯定和否定的结果。我们证明,在深度为1的本体上,合取查询具有多项式大小的非递归数据重写;树形查询具有多项式正存在重写;然而,在最坏的情况下,正存在重写可能是超多项式。在深度为2的本体论上,合取查询的正存在和非递归数据重写可能出现指数膨胀,而一阶重写可能是超多项式,除非NP≥P/poly。我们还分析了任意本体上树形查询的重写,并注意到此类查询的查询蕴涵是固定参数可处理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the succinctness of query rewriting over shallow ontologies
We investigate the succinctness problem for conjunctive query rewritings over OWL 2QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. We show that, over ontologies of depth 1, conjunctive queries have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can be superpolynomial. Over ontologies of depth 2, positive existential and nonrecursive datalog rewritings of conjunctive queries can suffer an exponential blowup, while first-order rewritings can be superpolynomial unless NP ⊆ P/poly. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and note that query entailment for such queries is fixed-parameter tractable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信