论由理想定义的理想变换

IF 0.3 4区 数学 Q4 MATHEMATICS
Y. Sadegh, J. A’zami, S. Yazdani
{"title":"论由理想定义的理想变换","authors":"Y. Sadegh, J. A’zami, S. Yazdani","doi":"10.54503/0002-3043-2022.57.6-62-69","DOIUrl":null,"url":null,"abstract":"Abstract Let $$R$$ be a commutative Noetherian ring, $$I$$ an ideal of $$R$$ , and $$M$$ an $$R$$ -module. The ambiguous structure of $$I$$ -transform functor $$D_{I}(-)$$ makes the study of its properties attractive. In this paper we gather conditions under which $$D_{I}(R)$$ and $$D_{I}(M)$$ appear in certain roles. It is shown under these conditions that $$D_{I}(R)$$ is a Cohen–Macaulay ring, regular ring, $$\\cdots$$ and $$D_{I}(M)$$ can be regarded as a Noetherian, flat, $$\\cdots R$$ -module. We also present a primary decomposition of zero submodule of $$D_{I}(M)$$ and secondary representation of $$D_{I}(M)$$ .","PeriodicalId":54854,"journal":{"name":"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences","volume":"9 1","pages":"399-404"},"PeriodicalIF":0.3000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Ideal Transforms Defined by an Ideal\",\"authors\":\"Y. Sadegh, J. A’zami, S. Yazdani\",\"doi\":\"10.54503/0002-3043-2022.57.6-62-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let $$R$$ be a commutative Noetherian ring, $$I$$ an ideal of $$R$$ , and $$M$$ an $$R$$ -module. The ambiguous structure of $$I$$ -transform functor $$D_{I}(-)$$ makes the study of its properties attractive. In this paper we gather conditions under which $$D_{I}(R)$$ and $$D_{I}(M)$$ appear in certain roles. It is shown under these conditions that $$D_{I}(R)$$ is a Cohen–Macaulay ring, regular ring, $$\\\\cdots$$ and $$D_{I}(M)$$ can be regarded as a Noetherian, flat, $$\\\\cdots R$$ -module. We also present a primary decomposition of zero submodule of $$D_{I}(M)$$ and secondary representation of $$D_{I}(M)$$ .\",\"PeriodicalId\":54854,\"journal\":{\"name\":\"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences\",\"volume\":\"9 1\",\"pages\":\"399-404\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.54503/0002-3043-2022.57.6-62-69\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.54503/0002-3043-2022.57.6-62-69","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$$R$$是一个交换诺瑟环,$$I$$是一个理想的$$R$$, $$M$$是一个$$R$$ -模块。$$I$$ -变换函子$$D_{I}(-)$$的二义性结构使得对其性质的研究具有吸引力。本文收集了$$D_{I}(R)$$和$$D_{I}(M)$$发挥一定作用的条件。在这些条件下证明$$D_{I}(R)$$是Cohen-Macaulay环,正则环,$$\cdots$$和$$D_{I}(M)$$可以看作是Noetherian, flat, $$\cdots R$$ -模。给出了$$D_{I}(M)$$零子模的一次分解和$$D_{I}(M)$$的二次表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Ideal Transforms Defined by an Ideal
Abstract Let $$R$$ be a commutative Noetherian ring, $$I$$ an ideal of $$R$$ , and $$M$$ an $$R$$ -module. The ambiguous structure of $$I$$ -transform functor $$D_{I}(-)$$ makes the study of its properties attractive. In this paper we gather conditions under which $$D_{I}(R)$$ and $$D_{I}(M)$$ appear in certain roles. It is shown under these conditions that $$D_{I}(R)$$ is a Cohen–Macaulay ring, regular ring, $$\cdots$$ and $$D_{I}(M)$$ can be regarded as a Noetherian, flat, $$\cdots R$$ -module. We also present a primary decomposition of zero submodule of $$D_{I}(M)$$ and secondary representation of $$D_{I}(M)$$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
32
审稿时长
>12 weeks
期刊介绍: Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) is an outlet for research stemming from the widely acclaimed Armenian school of theory of functions, this journal today continues the traditions of that school in the area of general analysis. A very prolific group of mathematicians in Yerevan contribute to this leading mathematics journal in the following fields: real and complex analysis; approximations; boundary value problems; integral and stochastic geometry; differential equations; probability; integral equations; algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信