U. Albrecht, Francisco Javier Santillán-Covarrubias
{"title":"几乎最大链环上的一个音符","authors":"U. Albrecht, Francisco Javier Santillán-Covarrubias","doi":"10.4171/rsmup/52","DOIUrl":null,"url":null,"abstract":"This paper discusses maximal and almost maximal rings in a noncommutative setting. Annihilators ideals in chain rings and their relationship to the concept of self-injectivity are investigated. In particular, a two-sided chain ring is right self-injective if and only if it is right co-Hopfian and a left maximal ring. Finally, localizations of chain rings are discussed. Mathematics Subject Classification (2010). Primary 16L30; Secondary 16D50; 16P70","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"9 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on almost maximal chain rings\",\"authors\":\"U. Albrecht, Francisco Javier Santillán-Covarrubias\",\"doi\":\"10.4171/rsmup/52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses maximal and almost maximal rings in a noncommutative setting. Annihilators ideals in chain rings and their relationship to the concept of self-injectivity are investigated. In particular, a two-sided chain ring is right self-injective if and only if it is right co-Hopfian and a left maximal ring. Finally, localizations of chain rings are discussed. Mathematics Subject Classification (2010). Primary 16L30; Secondary 16D50; 16P70\",\"PeriodicalId\":20997,\"journal\":{\"name\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"volume\":\"9 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti del Seminario Matematico della Università di Padova\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/rsmup/52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper discusses maximal and almost maximal rings in a noncommutative setting. Annihilators ideals in chain rings and their relationship to the concept of self-injectivity are investigated. In particular, a two-sided chain ring is right self-injective if and only if it is right co-Hopfian and a left maximal ring. Finally, localizations of chain rings are discussed. Mathematics Subject Classification (2010). Primary 16L30; Secondary 16D50; 16P70