群二元权重网络

K. Guo, Yicai Yang, Xiaofen Xing, Xiangmin Xu
{"title":"群二元权重网络","authors":"K. Guo, Yicai Yang, Xiaofen Xing, Xiangmin Xu","doi":"10.1117/12.2540888","DOIUrl":null,"url":null,"abstract":"In recent years, quantizing the weights of a deep neural network draws increasing attention in the area of network compression. An efficient and popular way to quantize the weight parameters is to replace a filter with the product of binary values and a real-valued scaling factor. However, the quantization error of such binarization method raises as the number of a filter's parameter increases. To reduce quantization error in existing network binarization methods, we propose group binary weight networks (GBWN), which divides the channels of each filter into groups and every channel in the same group shares the same scaling factor. We binarize the popular network architectures VGG, ResNet and DesneNet, and verify the performance on CIFAR10, CIFAR100, Fashion-MNIST, SVHN and ImageNet datasets. Experiment results show that GBWN achieves considerable accuracy increment compared to recent network binarization methods, including BinaryConnect, Binary Weight Networks and Stochastic Quantization Binary Weight Networks.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"12 1","pages":"1119812 - 1119812-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group binary weight networks\",\"authors\":\"K. Guo, Yicai Yang, Xiaofen Xing, Xiangmin Xu\",\"doi\":\"10.1117/12.2540888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, quantizing the weights of a deep neural network draws increasing attention in the area of network compression. An efficient and popular way to quantize the weight parameters is to replace a filter with the product of binary values and a real-valued scaling factor. However, the quantization error of such binarization method raises as the number of a filter's parameter increases. To reduce quantization error in existing network binarization methods, we propose group binary weight networks (GBWN), which divides the channels of each filter into groups and every channel in the same group shares the same scaling factor. We binarize the popular network architectures VGG, ResNet and DesneNet, and verify the performance on CIFAR10, CIFAR100, Fashion-MNIST, SVHN and ImageNet datasets. Experiment results show that GBWN achieves considerable accuracy increment compared to recent network binarization methods, including BinaryConnect, Binary Weight Networks and Stochastic Quantization Binary Weight Networks.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"12 1\",\"pages\":\"1119812 - 1119812-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2540888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2540888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,深度神经网络权值的量化问题在网络压缩领域受到越来越多的关注。一种有效且流行的量化权重参数的方法是用二值和实值比例因子的乘积代替滤波器。然而,这种二值化方法的量化误差随着滤波器参数个数的增加而增大。为了减少现有网络二值化方法中的量化误差,提出了分组二值权网络(GBWN),该网络将每个滤波器的信道划分为组,同一组中的每个信道共享相同的比例因子。我们对流行的网络架构VGG、ResNet和desenet进行了二值化,并在CIFAR10、CIFAR100、Fashion-MNIST、SVHN和ImageNet数据集上验证了性能。实验结果表明,与现有的网络二值化方法(包括BinaryConnect、二元权重网络和随机量化二元权重网络)相比,GBWN的准确率有了较大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Group binary weight networks
In recent years, quantizing the weights of a deep neural network draws increasing attention in the area of network compression. An efficient and popular way to quantize the weight parameters is to replace a filter with the product of binary values and a real-valued scaling factor. However, the quantization error of such binarization method raises as the number of a filter's parameter increases. To reduce quantization error in existing network binarization methods, we propose group binary weight networks (GBWN), which divides the channels of each filter into groups and every channel in the same group shares the same scaling factor. We binarize the popular network architectures VGG, ResNet and DesneNet, and verify the performance on CIFAR10, CIFAR100, Fashion-MNIST, SVHN and ImageNet datasets. Experiment results show that GBWN achieves considerable accuracy increment compared to recent network binarization methods, including BinaryConnect, Binary Weight Networks and Stochastic Quantization Binary Weight Networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信