{"title":"基于无限故障nhpp的软件可靠性模型有用吗?","authors":"Siqiao Li, T. Dohi, H. Okamura","doi":"10.3390/software2010001","DOIUrl":null,"url":null,"abstract":"In the literature, infinite-failure software reliability models (SRMs), such as Musa-Okumoto SRM (1984), have been demonstrated to be effective in quantitatively characterizing software testing processes and assessing software reliability. This paper primarily focuses on the infinite-failure (type-II) non-homogeneous Poisson process (NHPP)-based SRMs and evaluates the performances of these SRMs comprehensively by comparing with the existing finite-failure (type-I) NHPP-based SRMs. In more specific terms, to describe the software fault-detection time distribution, we postulate 11 representative probability distribution functions that can be categorized into the generalized exponential distribution family and the extreme-value distribution family. Then, we compare the goodness-of-fit and predictive performances with the associated 11 type-I and type-II NHPP-based SRMs. In numerical experiments, we analyze software fault-count data, collected from 16 actual development projects, which are commonly known in the software industry as fault-count time-domain data and fault-count time-interval data (group data). The maximum likelihood method is utilized to estimate the model parameters in both NHPP-based SRMs. In a comparison of the type-I with the type-II, it is shown that the type-II NHPP-based SRMs could exhibit better predictive performance than the existing type-I NHPP-based SRMs, especially in the early stage of software testing.","PeriodicalId":50378,"journal":{"name":"IET Software","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Are Infinite-Failure NHPP-Based Software Reliability Models Useful?\",\"authors\":\"Siqiao Li, T. Dohi, H. Okamura\",\"doi\":\"10.3390/software2010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the literature, infinite-failure software reliability models (SRMs), such as Musa-Okumoto SRM (1984), have been demonstrated to be effective in quantitatively characterizing software testing processes and assessing software reliability. This paper primarily focuses on the infinite-failure (type-II) non-homogeneous Poisson process (NHPP)-based SRMs and evaluates the performances of these SRMs comprehensively by comparing with the existing finite-failure (type-I) NHPP-based SRMs. In more specific terms, to describe the software fault-detection time distribution, we postulate 11 representative probability distribution functions that can be categorized into the generalized exponential distribution family and the extreme-value distribution family. Then, we compare the goodness-of-fit and predictive performances with the associated 11 type-I and type-II NHPP-based SRMs. In numerical experiments, we analyze software fault-count data, collected from 16 actual development projects, which are commonly known in the software industry as fault-count time-domain data and fault-count time-interval data (group data). The maximum likelihood method is utilized to estimate the model parameters in both NHPP-based SRMs. In a comparison of the type-I with the type-II, it is shown that the type-II NHPP-based SRMs could exhibit better predictive performance than the existing type-I NHPP-based SRMs, especially in the early stage of software testing.\",\"PeriodicalId\":50378,\"journal\":{\"name\":\"IET Software\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3390/software2010001\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/software2010001","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Are Infinite-Failure NHPP-Based Software Reliability Models Useful?
In the literature, infinite-failure software reliability models (SRMs), such as Musa-Okumoto SRM (1984), have been demonstrated to be effective in quantitatively characterizing software testing processes and assessing software reliability. This paper primarily focuses on the infinite-failure (type-II) non-homogeneous Poisson process (NHPP)-based SRMs and evaluates the performances of these SRMs comprehensively by comparing with the existing finite-failure (type-I) NHPP-based SRMs. In more specific terms, to describe the software fault-detection time distribution, we postulate 11 representative probability distribution functions that can be categorized into the generalized exponential distribution family and the extreme-value distribution family. Then, we compare the goodness-of-fit and predictive performances with the associated 11 type-I and type-II NHPP-based SRMs. In numerical experiments, we analyze software fault-count data, collected from 16 actual development projects, which are commonly known in the software industry as fault-count time-domain data and fault-count time-interval data (group data). The maximum likelihood method is utilized to estimate the model parameters in both NHPP-based SRMs. In a comparison of the type-I with the type-II, it is shown that the type-II NHPP-based SRMs could exhibit better predictive performance than the existing type-I NHPP-based SRMs, especially in the early stage of software testing.
期刊介绍:
IET Software publishes papers on all aspects of the software lifecycle, including design, development, implementation and maintenance. The focus of the journal is on the methods used to develop and maintain software, and their practical application.
Authors are especially encouraged to submit papers on the following topics, although papers on all aspects of software engineering are welcome:
Software and systems requirements engineering
Formal methods, design methods, practice and experience
Software architecture, aspect and object orientation, reuse and re-engineering
Testing, verification and validation techniques
Software dependability and measurement
Human systems engineering and human-computer interaction
Knowledge engineering; expert and knowledge-based systems, intelligent agents
Information systems engineering
Application of software engineering in industry and commerce
Software engineering technology transfer
Management of software development
Theoretical aspects of software development
Machine learning
Big data and big code
Cloud computing
Current Special Issue. Call for papers:
Knowledge Discovery for Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_KDSD.pdf
Big Data Analytics for Sustainable Software Development - https://digital-library.theiet.org/files/IET_SEN_CFP_BDASSD.pdf