原位阻抗谱法解码离子在聚合物膜中的传输选择性

IF 2.3 4区 工程技术 Q3 CHEMISTRY, MULTIDISCIPLINARY
Agnes Maria Mani, Ashwani Kumar, S. Chaudhury
{"title":"原位阻抗谱法解码离子在聚合物膜中的传输选择性","authors":"Agnes Maria Mani, Ashwani Kumar, S. Chaudhury","doi":"10.1080/01496395.2023.2219377","DOIUrl":null,"url":null,"abstract":"ABSTRACT Depending upon charge and chemical affinity, interplay between resistances of membrane (Rmem) and membrane–solution interface (RHT) may lead to preferential transport of an ion. Here, intermittent in-situ electrochemical impedance spectroscopy (EIS) was done during electrodriven transport (radiotracer based) to analyze the transport selectivity of Cs+ over Na+ in different membranes. Preference of the membranes for Cs+ was reflected in the time-dependent Nyquist plots itself. Bode plot analysis also indicated dominant Cs+ transport in terms of phase and frequency shift in crown ether (DB21C7) based membrane. In Cs+ selective polymer incluion membranes, irrespective of carrier, RHT contributed majorly to overall resistance. However, time dependence of RHT/Rmem was carrier as well as ion dependent. Interestingly, for nonselective ionic carrier, RHT/Rmem was majorly close to 1 and a reverese transport order than previous membranes were obtained. A higher Na+ transport (than Cs+) was also obtained for DB21C7 loaded Nafion, where, due to ion templating effect, Rmem was the governing factor. EIS spectral nature of a mixed feed solution follows that of the most preferred ion, thus suggesting that EIS can be used to study prospective real-life systems and can be used as a significant tool in designing ion-selective membranes.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding transport selectivity of ions in polymer membranes by In-situ impedance spectroscopy\",\"authors\":\"Agnes Maria Mani, Ashwani Kumar, S. Chaudhury\",\"doi\":\"10.1080/01496395.2023.2219377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Depending upon charge and chemical affinity, interplay between resistances of membrane (Rmem) and membrane–solution interface (RHT) may lead to preferential transport of an ion. Here, intermittent in-situ electrochemical impedance spectroscopy (EIS) was done during electrodriven transport (radiotracer based) to analyze the transport selectivity of Cs+ over Na+ in different membranes. Preference of the membranes for Cs+ was reflected in the time-dependent Nyquist plots itself. Bode plot analysis also indicated dominant Cs+ transport in terms of phase and frequency shift in crown ether (DB21C7) based membrane. In Cs+ selective polymer incluion membranes, irrespective of carrier, RHT contributed majorly to overall resistance. However, time dependence of RHT/Rmem was carrier as well as ion dependent. Interestingly, for nonselective ionic carrier, RHT/Rmem was majorly close to 1 and a reverese transport order than previous membranes were obtained. A higher Na+ transport (than Cs+) was also obtained for DB21C7 loaded Nafion, where, due to ion templating effect, Rmem was the governing factor. EIS spectral nature of a mixed feed solution follows that of the most preferred ion, thus suggesting that EIS can be used to study prospective real-life systems and can be used as a significant tool in designing ion-selective membranes.\",\"PeriodicalId\":21680,\"journal\":{\"name\":\"Separation Science and Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01496395.2023.2219377\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2219377","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding transport selectivity of ions in polymer membranes by In-situ impedance spectroscopy
ABSTRACT Depending upon charge and chemical affinity, interplay between resistances of membrane (Rmem) and membrane–solution interface (RHT) may lead to preferential transport of an ion. Here, intermittent in-situ electrochemical impedance spectroscopy (EIS) was done during electrodriven transport (radiotracer based) to analyze the transport selectivity of Cs+ over Na+ in different membranes. Preference of the membranes for Cs+ was reflected in the time-dependent Nyquist plots itself. Bode plot analysis also indicated dominant Cs+ transport in terms of phase and frequency shift in crown ether (DB21C7) based membrane. In Cs+ selective polymer incluion membranes, irrespective of carrier, RHT contributed majorly to overall resistance. However, time dependence of RHT/Rmem was carrier as well as ion dependent. Interestingly, for nonselective ionic carrier, RHT/Rmem was majorly close to 1 and a reverese transport order than previous membranes were obtained. A higher Na+ transport (than Cs+) was also obtained for DB21C7 loaded Nafion, where, due to ion templating effect, Rmem was the governing factor. EIS spectral nature of a mixed feed solution follows that of the most preferred ion, thus suggesting that EIS can be used to study prospective real-life systems and can be used as a significant tool in designing ion-selective membranes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Separation Science and Technology
Separation Science and Technology 工程技术-工程:化工
CiteScore
6.10
自引率
3.60%
发文量
131
审稿时长
5.7 months
期刊介绍: This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including  adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture,  flocculation and  magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信