Yingming Li, Zhongang Qi, Zhongfei Zhang, Mingyuan Yang
{"title":"使用有限和嘈杂的标签进行学习","authors":"Yingming Li, Zhongang Qi, Zhongfei Zhang, Mingyuan Yang","doi":"10.1145/2502081.2502111","DOIUrl":null,"url":null,"abstract":"With the rapid development of social networks, tagging has become an important means responsible for such rapid development. A robust tagging method must have the capability to meet the two challenging requirements: limited labeled training samples and noisy labeled training samples. In this paper, we investigate this challenging problem of learning with limited and noisy tagging and propose a discriminative model, called SpSVM-MC, that exploits both labeled and unlabeled data through a semi-parametric regularization and takes advantage of the multi-label constraints into the optimization. While SpSVM-MC is a general method for learning with limited and noisy tagging, in the evaluations we focus on the specific application of noisy image tagging with limited labeled training samples on a benchmark dataset. Theoretical analysis and extensive evaluations in comparison with state-of-the-art literature demonstrate that SpSVM-MC outstands with a superior performance.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning with limited and noisy tagging\",\"authors\":\"Yingming Li, Zhongang Qi, Zhongfei Zhang, Mingyuan Yang\",\"doi\":\"10.1145/2502081.2502111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of social networks, tagging has become an important means responsible for such rapid development. A robust tagging method must have the capability to meet the two challenging requirements: limited labeled training samples and noisy labeled training samples. In this paper, we investigate this challenging problem of learning with limited and noisy tagging and propose a discriminative model, called SpSVM-MC, that exploits both labeled and unlabeled data through a semi-parametric regularization and takes advantage of the multi-label constraints into the optimization. While SpSVM-MC is a general method for learning with limited and noisy tagging, in the evaluations we focus on the specific application of noisy image tagging with limited labeled training samples on a benchmark dataset. Theoretical analysis and extensive evaluations in comparison with state-of-the-art literature demonstrate that SpSVM-MC outstands with a superior performance.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
With the rapid development of social networks, tagging has become an important means responsible for such rapid development. A robust tagging method must have the capability to meet the two challenging requirements: limited labeled training samples and noisy labeled training samples. In this paper, we investigate this challenging problem of learning with limited and noisy tagging and propose a discriminative model, called SpSVM-MC, that exploits both labeled and unlabeled data through a semi-parametric regularization and takes advantage of the multi-label constraints into the optimization. While SpSVM-MC is a general method for learning with limited and noisy tagging, in the evaluations we focus on the specific application of noisy image tagging with limited labeled training samples on a benchmark dataset. Theoretical analysis and extensive evaluations in comparison with state-of-the-art literature demonstrate that SpSVM-MC outstands with a superior performance.