$L_p$度量($0 < p < 1$)中非周期函数的代数多项式逼近

Q4 Mathematics
L. B. Khodak
{"title":"$L_p$度量($0 < p < 1$)中非周期函数的代数多项式逼近","authors":"L. B. Khodak","doi":"10.15421/247710","DOIUrl":null,"url":null,"abstract":"In the paper, we consider approximations of nonperiodic functions defined on $[-1, 1]$ by algebraic polynomials in $L_p$ metric ($0 < p < 1$).In particular, for some classes we provide the constructive characteristic in the same metric.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On approximation of nonperiodic functions by algebraic polynomials in $L_p$ metric ($0 < p < 1$)\",\"authors\":\"L. B. Khodak\",\"doi\":\"10.15421/247710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider approximations of nonperiodic functions defined on $[-1, 1]$ by algebraic polynomials in $L_p$ metric ($0 < p < 1$).In particular, for some classes we provide the constructive characteristic in the same metric.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/247710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在$L_p$度量($0 < p < 1$)中定义在$[- 1,1]$上的非周期函数的代数多项式逼近。特别是,对于某些类,我们在相同的度量中提供了建设性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On approximation of nonperiodic functions by algebraic polynomials in $L_p$ metric ($0 < p < 1$)
In the paper, we consider approximations of nonperiodic functions defined on $[-1, 1]$ by algebraic polynomials in $L_p$ metric ($0 < p < 1$).In particular, for some classes we provide the constructive characteristic in the same metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
8
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信