{"title":"$L_p$度量($0 < p < 1$)中非周期函数的代数多项式逼近","authors":"L. B. Khodak","doi":"10.15421/247710","DOIUrl":null,"url":null,"abstract":"In the paper, we consider approximations of nonperiodic functions defined on $[-1, 1]$ by algebraic polynomials in $L_p$ metric ($0 < p < 1$).In particular, for some classes we provide the constructive characteristic in the same metric.","PeriodicalId":52827,"journal":{"name":"Researches in Mathematics","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On approximation of nonperiodic functions by algebraic polynomials in $L_p$ metric ($0 < p < 1$)\",\"authors\":\"L. B. Khodak\",\"doi\":\"10.15421/247710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we consider approximations of nonperiodic functions defined on $[-1, 1]$ by algebraic polynomials in $L_p$ metric ($0 < p < 1$).In particular, for some classes we provide the constructive characteristic in the same metric.\",\"PeriodicalId\":52827,\"journal\":{\"name\":\"Researches in Mathematics\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Researches in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/247710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Researches in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/247710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了在$L_p$度量($0 < p < 1$)中定义在$[- 1,1]$上的非周期函数的代数多项式逼近。特别是,对于某些类,我们在相同的度量中提供了建设性特征。
On approximation of nonperiodic functions by algebraic polynomials in $L_p$ metric ($0 < p < 1$)
In the paper, we consider approximations of nonperiodic functions defined on $[-1, 1]$ by algebraic polynomials in $L_p$ metric ($0 < p < 1$).In particular, for some classes we provide the constructive characteristic in the same metric.