{"title":"基于混合-混合融合的多标签数据语义视频概念检测","authors":"N. Janwe, K. Bhoyar","doi":"10.5565/REV/ELCVIA.927","DOIUrl":null,"url":null,"abstract":"The performance of the semantic concept detection method depends on, the selection of the low-level visual features used to represent key-frames of a shot and the selection of the feature-fusion method used. This paper proposes a set of low-level visual features of considerably smaller size and also proposes novel ‘hybrid-fusion’ and ‘mixed-hybrid-fusion’, approaches which are formulated by combining early and late-fusion strategies proposed in the literature. In the initially proposed hybrid-fusion approach, the features from the same feature group are combined using early-fusion before classifier training; and the concept probability scores from multiple classifiers are merged using late-fusion approach to get final detection scores. A feature group is defined as the features from the same feature family such as color moment. The hybrid-fusion approach is refined and the “mixed-hybrid-fusion” approach is proposed to further improve detection rate. This paper presents a novel video concept detection system for multi-label data using a proposed mixed-hybrid-fusion approach. Support Vector Machine (SVM) is used to build classifiers that produce concept probabilities for a test frame. The proposed approaches are evaluated on multi-label TRECVID2007 development dataset. Experimental results show that, the proposed mixed-hybrid-fusion approach performs better than other proposed hybrid-fusion approach and outperforms all conventional early-fusion and late-fusion approaches by large margins with respect to feature set dimensionality and Mean Average Precision (MAP) values.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":"10 1","pages":"14-29"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Semantic Video Concept Detection using Novel Mixed-Hybrid-Fusion Approach for Multi-Label Data\",\"authors\":\"N. Janwe, K. Bhoyar\",\"doi\":\"10.5565/REV/ELCVIA.927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the semantic concept detection method depends on, the selection of the low-level visual features used to represent key-frames of a shot and the selection of the feature-fusion method used. This paper proposes a set of low-level visual features of considerably smaller size and also proposes novel ‘hybrid-fusion’ and ‘mixed-hybrid-fusion’, approaches which are formulated by combining early and late-fusion strategies proposed in the literature. In the initially proposed hybrid-fusion approach, the features from the same feature group are combined using early-fusion before classifier training; and the concept probability scores from multiple classifiers are merged using late-fusion approach to get final detection scores. A feature group is defined as the features from the same feature family such as color moment. The hybrid-fusion approach is refined and the “mixed-hybrid-fusion” approach is proposed to further improve detection rate. This paper presents a novel video concept detection system for multi-label data using a proposed mixed-hybrid-fusion approach. Support Vector Machine (SVM) is used to build classifiers that produce concept probabilities for a test frame. The proposed approaches are evaluated on multi-label TRECVID2007 development dataset. Experimental results show that, the proposed mixed-hybrid-fusion approach performs better than other proposed hybrid-fusion approach and outperforms all conventional early-fusion and late-fusion approaches by large margins with respect to feature set dimensionality and Mean Average Precision (MAP) values.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\"10 1\",\"pages\":\"14-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/REV/ELCVIA.927\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.927","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
Semantic Video Concept Detection using Novel Mixed-Hybrid-Fusion Approach for Multi-Label Data
The performance of the semantic concept detection method depends on, the selection of the low-level visual features used to represent key-frames of a shot and the selection of the feature-fusion method used. This paper proposes a set of low-level visual features of considerably smaller size and also proposes novel ‘hybrid-fusion’ and ‘mixed-hybrid-fusion’, approaches which are formulated by combining early and late-fusion strategies proposed in the literature. In the initially proposed hybrid-fusion approach, the features from the same feature group are combined using early-fusion before classifier training; and the concept probability scores from multiple classifiers are merged using late-fusion approach to get final detection scores. A feature group is defined as the features from the same feature family such as color moment. The hybrid-fusion approach is refined and the “mixed-hybrid-fusion” approach is proposed to further improve detection rate. This paper presents a novel video concept detection system for multi-label data using a proposed mixed-hybrid-fusion approach. Support Vector Machine (SVM) is used to build classifiers that produce concept probabilities for a test frame. The proposed approaches are evaluated on multi-label TRECVID2007 development dataset. Experimental results show that, the proposed mixed-hybrid-fusion approach performs better than other proposed hybrid-fusion approach and outperforms all conventional early-fusion and late-fusion approaches by large margins with respect to feature set dimensionality and Mean Average Precision (MAP) values.