{"title":"评估金融市场的偏差","authors":"Giovanni Campisi, L. La Rocca, S. Muzzioli","doi":"10.1111/stan.12273","DOIUrl":null,"url":null,"abstract":"It is a matter of common observation that investors value substantial gains but are averse to heavy losses. Obvious as it may sound, this translates into an interesting preference for right‐skewed return distributions, whose right tails are heavier than their left tails. Skewness is thus not only a way to describe the shape of a distribution, but also a tool for risk measurement. We review the statistical literature on skewness and provide a comprehensive framework for its assessment. Then, we present a new measure of skewness, based on the decomposition of variance in its upward and downward components. We argue that this measure fills a gap in the literature and show in a simulation study that it strikes a good balance between robustness and sensitivity.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"61 1","pages":"48 - 70"},"PeriodicalIF":1.4000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing skewness in financial markets\",\"authors\":\"Giovanni Campisi, L. La Rocca, S. Muzzioli\",\"doi\":\"10.1111/stan.12273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a matter of common observation that investors value substantial gains but are averse to heavy losses. Obvious as it may sound, this translates into an interesting preference for right‐skewed return distributions, whose right tails are heavier than their left tails. Skewness is thus not only a way to describe the shape of a distribution, but also a tool for risk measurement. We review the statistical literature on skewness and provide a comprehensive framework for its assessment. Then, we present a new measure of skewness, based on the decomposition of variance in its upward and downward components. We argue that this measure fills a gap in the literature and show in a simulation study that it strikes a good balance between robustness and sensitivity.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"61 1\",\"pages\":\"48 - 70\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12273\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12273","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
It is a matter of common observation that investors value substantial gains but are averse to heavy losses. Obvious as it may sound, this translates into an interesting preference for right‐skewed return distributions, whose right tails are heavier than their left tails. Skewness is thus not only a way to describe the shape of a distribution, but also a tool for risk measurement. We review the statistical literature on skewness and provide a comprehensive framework for its assessment. Then, we present a new measure of skewness, based on the decomposition of variance in its upward and downward components. We argue that this measure fills a gap in the literature and show in a simulation study that it strikes a good balance between robustness and sensitivity.
期刊介绍:
Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.