使用粗粒度和细粒度混合方法的代码克隆检测

Abdullah M. Sheneamer, J. Kalita
{"title":"使用粗粒度和细粒度混合方法的代码克隆检测","authors":"Abdullah M. Sheneamer, J. Kalita","doi":"10.1109/INTELCIS.2015.7397263","DOIUrl":null,"url":null,"abstract":"If two fragments of source code are identical to each other, they are called code clones. Code clones introduce difficulties in software maintenance and cause bug propagation. Coarse-grained clone detectors have higher precision than fine-grained, but fine-grained detectors have higher recall than coarse-grained. In this paper, we present a hybrid clone detection technique that first uses a coarse-grained technique to analyze clones effectively to improve precision. Subsequently, we use a fine-grained detector to obtain additional information about the clones and to improve recall. Our method detects Type-1 and Type-2 clones using hash values for blocks, and gapped code clones (Type-3) using block detection and subsequent comparison between them using Levenshtein distance and Cosine measures with varying thresholds.","PeriodicalId":6478,"journal":{"name":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"96 1","pages":"472-480"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Code clone detection using coarse and fine-grained hybrid approaches\",\"authors\":\"Abdullah M. Sheneamer, J. Kalita\",\"doi\":\"10.1109/INTELCIS.2015.7397263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If two fragments of source code are identical to each other, they are called code clones. Code clones introduce difficulties in software maintenance and cause bug propagation. Coarse-grained clone detectors have higher precision than fine-grained, but fine-grained detectors have higher recall than coarse-grained. In this paper, we present a hybrid clone detection technique that first uses a coarse-grained technique to analyze clones effectively to improve precision. Subsequently, we use a fine-grained detector to obtain additional information about the clones and to improve recall. Our method detects Type-1 and Type-2 clones using hash values for blocks, and gapped code clones (Type-3) using block detection and subsequent comparison between them using Levenshtein distance and Cosine measures with varying thresholds.\",\"PeriodicalId\":6478,\"journal\":{\"name\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"volume\":\"96 1\",\"pages\":\"472-480\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTELCIS.2015.7397263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2015.7397263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

如果两个源代码片段彼此相同,它们被称为代码克隆。代码克隆给软件维护带来困难,并导致bug传播。粗粒度克隆检测器比细粒度克隆检测器具有更高的精度,但细粒度克隆检测器具有比粗粒度克隆检测器更高的召回率。在本文中,我们提出了一种混合克隆检测技术,该技术首先使用粗粒度技术来有效地分析克隆以提高精度。随后,我们使用细粒度检测器来获取有关克隆的附加信息并提高召回率。我们的方法使用块的哈希值来检测Type-1和Type-2克隆,使用块检测来检测缺口代码克隆(Type-3),然后使用Levenshtein距离和余弦测量在不同阈值下对它们进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Code clone detection using coarse and fine-grained hybrid approaches
If two fragments of source code are identical to each other, they are called code clones. Code clones introduce difficulties in software maintenance and cause bug propagation. Coarse-grained clone detectors have higher precision than fine-grained, but fine-grained detectors have higher recall than coarse-grained. In this paper, we present a hybrid clone detection technique that first uses a coarse-grained technique to analyze clones effectively to improve precision. Subsequently, we use a fine-grained detector to obtain additional information about the clones and to improve recall. Our method detects Type-1 and Type-2 clones using hash values for blocks, and gapped code clones (Type-3) using block detection and subsequent comparison between them using Levenshtein distance and Cosine measures with varying thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信