{"title":"填充颗粒床中饱和流体流动的模拟——从XMT图像计算渗透率的格子-玻尔兹曼方法","authors":"A.R. Videla, C.L. Lin, J.D. Miller","doi":"10.1016/j.jcice.2007.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Cone beam X-ray microtomography (XMT) instrumentation is a state-of-the-art non-invasive technology now used for several years to describe important characteristics of packed particle beds in three-dimensional (3D) detail. Many process engineering operations involve the transport of fluid in porous media. It is well known that the flow in porous media depends on the geometric properties of the pore network structure and in this regard X-ray microtomographic imaging captures the porous network structure of opaque packed particle beds which is later used for fluid flow analysis. The coupling of XMT 3D imaging with a novel fluid flow simulation method, known as the lattice-Boltzmann model (LBM), allows for direct local flow determination and micro-permeability calculations for complex porous structures. In this paper the methodology is briefly explained, implementations for some practical problems are addressed, the application of the technique from results for packed particle beds of interest are presented, and a comparison with experimental data is made.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":"39 2","pages":"Pages 117-128"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2007.12.002","citationCount":"32","resultStr":"{\"title\":\"Simulation of saturated fluid flow in packed particle beds—The lattice-Boltzmann method for the calculation of permeability from XMT images\",\"authors\":\"A.R. Videla, C.L. Lin, J.D. Miller\",\"doi\":\"10.1016/j.jcice.2007.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cone beam X-ray microtomography (XMT) instrumentation is a state-of-the-art non-invasive technology now used for several years to describe important characteristics of packed particle beds in three-dimensional (3D) detail. Many process engineering operations involve the transport of fluid in porous media. It is well known that the flow in porous media depends on the geometric properties of the pore network structure and in this regard X-ray microtomographic imaging captures the porous network structure of opaque packed particle beds which is later used for fluid flow analysis. The coupling of XMT 3D imaging with a novel fluid flow simulation method, known as the lattice-Boltzmann model (LBM), allows for direct local flow determination and micro-permeability calculations for complex porous structures. In this paper the methodology is briefly explained, implementations for some practical problems are addressed, the application of the technique from results for packed particle beds of interest are presented, and a comparison with experimental data is made.</p></div>\",\"PeriodicalId\":17285,\"journal\":{\"name\":\"Journal of The Chinese Institute of Chemical Engineers\",\"volume\":\"39 2\",\"pages\":\"Pages 117-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jcice.2007.12.002\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chinese Institute of Chemical Engineers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S036816530700130X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036816530700130X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation of saturated fluid flow in packed particle beds—The lattice-Boltzmann method for the calculation of permeability from XMT images
Cone beam X-ray microtomography (XMT) instrumentation is a state-of-the-art non-invasive technology now used for several years to describe important characteristics of packed particle beds in three-dimensional (3D) detail. Many process engineering operations involve the transport of fluid in porous media. It is well known that the flow in porous media depends on the geometric properties of the pore network structure and in this regard X-ray microtomographic imaging captures the porous network structure of opaque packed particle beds which is later used for fluid flow analysis. The coupling of XMT 3D imaging with a novel fluid flow simulation method, known as the lattice-Boltzmann model (LBM), allows for direct local flow determination and micro-permeability calculations for complex porous structures. In this paper the methodology is briefly explained, implementations for some practical problems are addressed, the application of the technique from results for packed particle beds of interest are presented, and a comparison with experimental data is made.