{"title":"具有较少颜色的确定性分布边缘着色","authors":"M. Ghaffari, F. Kuhn, Yannic Maus, Jara Uitto","doi":"10.1145/3188745.3188906","DOIUrl":null,"url":null,"abstract":"We present a deterministic distributed algorithm, in the LOCAL model, that computes a (1+o(1))Δ-edge-coloring in polylogarithmic-time, so long as the maximum degree Δ=Ω(logn). For smaller Δ, we give a polylogarithmic-time 3Δ/2-edge-coloring. These are the first deterministic algorithms to go below the natural barrier of 2Δ−1 colors, and they improve significantly on the recent polylogarithmic-time (2Δ−1)(1+o(1))-edge-coloring of Ghaffari and Su [SODA’17] and the (2Δ−1)-edge-coloring of Fischer, Ghaffari, and Kuhn [FOCS’17], positively answering the main open question of the latter. The key technical ingredient of our algorithm is a simple and novel gradual packing of judiciously chosen near-maximum matchings, each of which becomes one of the color classes.","PeriodicalId":20593,"journal":{"name":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Deterministic distributed edge-coloring with fewer colors\",\"authors\":\"M. Ghaffari, F. Kuhn, Yannic Maus, Jara Uitto\",\"doi\":\"10.1145/3188745.3188906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a deterministic distributed algorithm, in the LOCAL model, that computes a (1+o(1))Δ-edge-coloring in polylogarithmic-time, so long as the maximum degree Δ=Ω(logn). For smaller Δ, we give a polylogarithmic-time 3Δ/2-edge-coloring. These are the first deterministic algorithms to go below the natural barrier of 2Δ−1 colors, and they improve significantly on the recent polylogarithmic-time (2Δ−1)(1+o(1))-edge-coloring of Ghaffari and Su [SODA’17] and the (2Δ−1)-edge-coloring of Fischer, Ghaffari, and Kuhn [FOCS’17], positively answering the main open question of the latter. The key technical ingredient of our algorithm is a simple and novel gradual packing of judiciously chosen near-maximum matchings, each of which becomes one of the color classes.\",\"PeriodicalId\":20593,\"journal\":{\"name\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3188745.3188906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3188745.3188906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deterministic distributed edge-coloring with fewer colors
We present a deterministic distributed algorithm, in the LOCAL model, that computes a (1+o(1))Δ-edge-coloring in polylogarithmic-time, so long as the maximum degree Δ=Ω(logn). For smaller Δ, we give a polylogarithmic-time 3Δ/2-edge-coloring. These are the first deterministic algorithms to go below the natural barrier of 2Δ−1 colors, and they improve significantly on the recent polylogarithmic-time (2Δ−1)(1+o(1))-edge-coloring of Ghaffari and Su [SODA’17] and the (2Δ−1)-edge-coloring of Fischer, Ghaffari, and Kuhn [FOCS’17], positively answering the main open question of the latter. The key technical ingredient of our algorithm is a simple and novel gradual packing of judiciously chosen near-maximum matchings, each of which becomes one of the color classes.