{"title":"断裂力学的方法,以提高产品和过程的可持续性,在金刚石线锯太阳能电池硅片通过改进线设计","authors":"Arkadeep Kumar, S. Melkote","doi":"10.1504/ijsm.2020.10028817","DOIUrl":null,"url":null,"abstract":"By decreasing the subsurface damage in silicon wafers produced by diamond wire sawing, the mechanical strength of wafers can be increased, and the amount of silicon to be etched in subsequent manufacturing steps can be minimised, enhancing both product and process sustainability. Apart from the sawing process parameters, the subsurface damage in as-sawn silicon wafers is influenced by the design of the diamond wire. We present a fracture mechanics approach for the design of fixed abrasive diamond wires used in wire sawing of silicon wafers for solar cells. Starting from an allowable damage (crack) depth, indentation fracture mechanics and contact analysis are used to determine the wire design parameters, namely the grit protrusion and peripheral distribution of diamond abrasives. The improved wire design can reduce subsurface damage and thereby improve the surface integrity (product sustainability), and reduce the processing time and chemicals used in the subsequent saw-damage removal step (process sustainability).","PeriodicalId":38701,"journal":{"name":"International Journal of Sustainable Manufacturing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A fracture mechanics approach to enhance product and process sustainability in diamond wire sawing of silicon wafers for solar cells through improved wire design\",\"authors\":\"Arkadeep Kumar, S. Melkote\",\"doi\":\"10.1504/ijsm.2020.10028817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By decreasing the subsurface damage in silicon wafers produced by diamond wire sawing, the mechanical strength of wafers can be increased, and the amount of silicon to be etched in subsequent manufacturing steps can be minimised, enhancing both product and process sustainability. Apart from the sawing process parameters, the subsurface damage in as-sawn silicon wafers is influenced by the design of the diamond wire. We present a fracture mechanics approach for the design of fixed abrasive diamond wires used in wire sawing of silicon wafers for solar cells. Starting from an allowable damage (crack) depth, indentation fracture mechanics and contact analysis are used to determine the wire design parameters, namely the grit protrusion and peripheral distribution of diamond abrasives. The improved wire design can reduce subsurface damage and thereby improve the surface integrity (product sustainability), and reduce the processing time and chemicals used in the subsequent saw-damage removal step (process sustainability).\",\"PeriodicalId\":38701,\"journal\":{\"name\":\"International Journal of Sustainable Manufacturing\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijsm.2020.10028817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijsm.2020.10028817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
A fracture mechanics approach to enhance product and process sustainability in diamond wire sawing of silicon wafers for solar cells through improved wire design
By decreasing the subsurface damage in silicon wafers produced by diamond wire sawing, the mechanical strength of wafers can be increased, and the amount of silicon to be etched in subsequent manufacturing steps can be minimised, enhancing both product and process sustainability. Apart from the sawing process parameters, the subsurface damage in as-sawn silicon wafers is influenced by the design of the diamond wire. We present a fracture mechanics approach for the design of fixed abrasive diamond wires used in wire sawing of silicon wafers for solar cells. Starting from an allowable damage (crack) depth, indentation fracture mechanics and contact analysis are used to determine the wire design parameters, namely the grit protrusion and peripheral distribution of diamond abrasives. The improved wire design can reduce subsurface damage and thereby improve the surface integrity (product sustainability), and reduce the processing time and chemicals used in the subsequent saw-damage removal step (process sustainability).