宽禁带功率半导体有源区精确温度测量

IF 1 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Alireza Ramyar, Yukun Lou, A. Avestruz
{"title":"宽禁带功率半导体有源区精确温度测量","authors":"Alireza Ramyar, Yukun Lou, A. Avestruz","doi":"10.1109/COMPEL52896.2023.10221096","DOIUrl":null,"url":null,"abstract":"High breakdown voltage, low on-resistance, and high speed have made wide-bandgap power semiconductors suitable for many applications such as wireless power transfer, electric vehicles, hybrid and electric aircraft, and aerospace. However, the maximum power density of these devices is limited by the channel temperature rise. Thus, accurate temperature measurement of the active area is essential in research on wide-bandgap power semiconductors, which is often hampered by packaging and cooling methods. Employing temperature sensitive electrical parameters (TSEP) is a promising approach for the temperature measurement of power semiconductors. This paper uses a vector of three TSEPs, i.e., the gate-source voltage biased at weak, moderate, and strong inversion regions, to extract more information for accurate temperature measurement of the active area in GaN FETs.","PeriodicalId":55233,"journal":{"name":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","volume":"86 1","pages":"1-8"},"PeriodicalIF":1.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Temperature Measurement of Active Area for Wide-Bandgap Power Semiconductors\",\"authors\":\"Alireza Ramyar, Yukun Lou, A. Avestruz\",\"doi\":\"10.1109/COMPEL52896.2023.10221096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High breakdown voltage, low on-resistance, and high speed have made wide-bandgap power semiconductors suitable for many applications such as wireless power transfer, electric vehicles, hybrid and electric aircraft, and aerospace. However, the maximum power density of these devices is limited by the channel temperature rise. Thus, accurate temperature measurement of the active area is essential in research on wide-bandgap power semiconductors, which is often hampered by packaging and cooling methods. Employing temperature sensitive electrical parameters (TSEP) is a promising approach for the temperature measurement of power semiconductors. This paper uses a vector of three TSEPs, i.e., the gate-source voltage biased at weak, moderate, and strong inversion regions, to extract more information for accurate temperature measurement of the active area in GaN FETs.\",\"PeriodicalId\":55233,\"journal\":{\"name\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"volume\":\"86 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPEL52896.2023.10221096\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compel-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/COMPEL52896.2023.10221096","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

高击穿电压、低导通电阻和高速度使得宽禁带功率半导体适用于无线电力传输、电动汽车、混合动力和电动飞机以及航空航天等许多应用。然而,这些器件的最大功率密度受到通道温升的限制。因此,在宽禁带功率半导体的研究中,精确的有源区域温度测量是必不可少的,这往往受到封装和冷却方法的阻碍。采用温度敏感电参数(TSEP)测量功率半导体的温度是一种很有前途的方法。本文使用三个tsps的矢量,即门源电压偏置在弱,中等和强反转区域,以提取更多信息,用于GaN场效应管有源区域的精确温度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Temperature Measurement of Active Area for Wide-Bandgap Power Semiconductors
High breakdown voltage, low on-resistance, and high speed have made wide-bandgap power semiconductors suitable for many applications such as wireless power transfer, electric vehicles, hybrid and electric aircraft, and aerospace. However, the maximum power density of these devices is limited by the channel temperature rise. Thus, accurate temperature measurement of the active area is essential in research on wide-bandgap power semiconductors, which is often hampered by packaging and cooling methods. Employing temperature sensitive electrical parameters (TSEP) is a promising approach for the temperature measurement of power semiconductors. This paper uses a vector of three TSEPs, i.e., the gate-source voltage biased at weak, moderate, and strong inversion regions, to extract more information for accurate temperature measurement of the active area in GaN FETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
124
审稿时长
4.2 months
期刊介绍: COMPEL exists for the discussion and dissemination of computational and analytical methods in electrical and electronic engineering. The main emphasis of papers should be on methods and new techniques, or the application of existing techniques in a novel way. Whilst papers with immediate application to particular engineering problems are welcome, so too are papers that form a basis for further development in the area of study. A double-blind review process ensures the content''s validity and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信