Siqi Wu, Lei Yang, X. Yang, Peng Chen, Jin Su, Hongzhi Wu, Zhufeng Liu, Haoze Wang, C. Wang, C. Yan, Yusheng Shi
{"title":"选择性激光熔化制备AlSi10Mg陀螺晶格结构的力学性能和能量吸收","authors":"Siqi Wu, Lei Yang, X. Yang, Peng Chen, Jin Su, Hongzhi Wu, Zhufeng Liu, Haoze Wang, C. Wang, C. Yan, Yusheng Shi","doi":"10.1142/s2737549821500010","DOIUrl":null,"url":null,"abstract":"Aluminium alloy lattice structures are prospective candidates for high-value engineering applications due to their excellent comprehensive properties. Selective laser melting (SLM), a promising additive manufacturing (AM) process, enables the fabrication of metallic periodic lattices with complex and controllable internal design. In this paper, finite element (FE) analysis with the Johnson–Cook model was employed to investigate the compressive plastic deformation and the fracture mechanisms of AlSi10Mg Gyroid lattice structures (GLSs). The simulated accuracy was then validated by the compression test of GLS samples with various volume fractions fabricated via SLM. The results revealed that FE simulations were in conformity with the experimental testing with most prediction errors less than 25% and could be utilised to estimate and characterise the mechanical properties for AlSi10Mg GLSs. Finally, the discussion about the energy absorption of GLSs during the elastic and yield stage demonstrated that the FE data were comparable with the experimental results, and the rise in volume fraction contributed to the increase of energy absorption capability from 1.33 J/mm3 to 9.61 J/mm3 and improved the ability to resist the decline of absorption efficiency. This study provides a deeper understanding and guidance based on FE analysis for the optimal design and AM of Al alloy lattice structures.","PeriodicalId":51957,"journal":{"name":"Smart and Sustainable Manufacturing Systems","volume":"19 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mechanical properties and energy absorption of AlSi10Mg Gyroid lattice structures fabricated by selective laser melting\",\"authors\":\"Siqi Wu, Lei Yang, X. Yang, Peng Chen, Jin Su, Hongzhi Wu, Zhufeng Liu, Haoze Wang, C. Wang, C. Yan, Yusheng Shi\",\"doi\":\"10.1142/s2737549821500010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminium alloy lattice structures are prospective candidates for high-value engineering applications due to their excellent comprehensive properties. Selective laser melting (SLM), a promising additive manufacturing (AM) process, enables the fabrication of metallic periodic lattices with complex and controllable internal design. In this paper, finite element (FE) analysis with the Johnson–Cook model was employed to investigate the compressive plastic deformation and the fracture mechanisms of AlSi10Mg Gyroid lattice structures (GLSs). The simulated accuracy was then validated by the compression test of GLS samples with various volume fractions fabricated via SLM. The results revealed that FE simulations were in conformity with the experimental testing with most prediction errors less than 25% and could be utilised to estimate and characterise the mechanical properties for AlSi10Mg GLSs. Finally, the discussion about the energy absorption of GLSs during the elastic and yield stage demonstrated that the FE data were comparable with the experimental results, and the rise in volume fraction contributed to the increase of energy absorption capability from 1.33 J/mm3 to 9.61 J/mm3 and improved the ability to resist the decline of absorption efficiency. This study provides a deeper understanding and guidance based on FE analysis for the optimal design and AM of Al alloy lattice structures.\",\"PeriodicalId\":51957,\"journal\":{\"name\":\"Smart and Sustainable Manufacturing Systems\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart and Sustainable Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2737549821500010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737549821500010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Mechanical properties and energy absorption of AlSi10Mg Gyroid lattice structures fabricated by selective laser melting
Aluminium alloy lattice structures are prospective candidates for high-value engineering applications due to their excellent comprehensive properties. Selective laser melting (SLM), a promising additive manufacturing (AM) process, enables the fabrication of metallic periodic lattices with complex and controllable internal design. In this paper, finite element (FE) analysis with the Johnson–Cook model was employed to investigate the compressive plastic deformation and the fracture mechanisms of AlSi10Mg Gyroid lattice structures (GLSs). The simulated accuracy was then validated by the compression test of GLS samples with various volume fractions fabricated via SLM. The results revealed that FE simulations were in conformity with the experimental testing with most prediction errors less than 25% and could be utilised to estimate and characterise the mechanical properties for AlSi10Mg GLSs. Finally, the discussion about the energy absorption of GLSs during the elastic and yield stage demonstrated that the FE data were comparable with the experimental results, and the rise in volume fraction contributed to the increase of energy absorption capability from 1.33 J/mm3 to 9.61 J/mm3 and improved the ability to resist the decline of absorption efficiency. This study provides a deeper understanding and guidance based on FE analysis for the optimal design and AM of Al alloy lattice structures.