{"title":"CANDU岩心崩塌后末端碎屑床形成模型","authors":"R. David","doi":"10.1515/kern-2022-0095","DOIUrl":null,"url":null,"abstract":"Abstract A CANDU reactor core comprises several hundred horizontal fuel channels spanning a calandria vessel. Loss of sufficient cooling during a severe accident could result in collapse of the core to the bottom of the calandria. A simple computational tool for simulating, in two dimensions, the resulting build-up of a terminal debris bed is described. The tool is used to model a variety of core collapse scenarios. Computed debris beds are generally lower in the middle, ∼10 fuel channels deep, and have higher decay power in their interiors. The initial debris bed porosity is estimated to be 0.65 ± 0.15. High porosity could augment in-vessel hydrogen generation and fission product release during subsequent debris bed heat-up.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"70 1","pages":"186 - 193"},"PeriodicalIF":0.4000,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model of terminal debris bed formation after a CANDU core collapse\",\"authors\":\"R. David\",\"doi\":\"10.1515/kern-2022-0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A CANDU reactor core comprises several hundred horizontal fuel channels spanning a calandria vessel. Loss of sufficient cooling during a severe accident could result in collapse of the core to the bottom of the calandria. A simple computational tool for simulating, in two dimensions, the resulting build-up of a terminal debris bed is described. The tool is used to model a variety of core collapse scenarios. Computed debris beds are generally lower in the middle, ∼10 fuel channels deep, and have higher decay power in their interiors. The initial debris bed porosity is estimated to be 0.65 ± 0.15. High porosity could augment in-vessel hydrogen generation and fission product release during subsequent debris bed heat-up.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"70 1\",\"pages\":\"186 - 193\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0095\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Model of terminal debris bed formation after a CANDU core collapse
Abstract A CANDU reactor core comprises several hundred horizontal fuel channels spanning a calandria vessel. Loss of sufficient cooling during a severe accident could result in collapse of the core to the bottom of the calandria. A simple computational tool for simulating, in two dimensions, the resulting build-up of a terminal debris bed is described. The tool is used to model a variety of core collapse scenarios. Computed debris beds are generally lower in the middle, ∼10 fuel channels deep, and have higher decay power in their interiors. The initial debris bed porosity is estimated to be 0.65 ± 0.15. High porosity could augment in-vessel hydrogen generation and fission product release during subsequent debris bed heat-up.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).