用退火进化算法分析扩展x射线吸收精细结构光谱

W. Cai, Liya Wang, Z. Pan, X. Shao
{"title":"用退火进化算法分析扩展x射线吸收精细结构光谱","authors":"W. Cai, Liya Wang, Z. Pan, X. Shao","doi":"10.1039/A904553H","DOIUrl":null,"url":null,"abstract":"An annealing evolutionary algorithm (AEA), which combines aspects of genetic algorithms and simulated annealing, is proposed to find the global minimum of a non-linear least square function for spectral fitting. By application of the algorithm to the fitting of structural parameters from experimental extended X-ray absorption fine structure (EXAFS) spectra of two Cu samples, it was found that reasonable results were obtained. Comparing with genetic algorithms and EXCURVE88, the AEA method is faster and more accurate in analysis of EXAFS spectra.","PeriodicalId":7814,"journal":{"name":"Analytical Communications","volume":"33 1","pages":"313-315"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Analysis of extended X-ray absorption fine structure spectra using annealing evolutionary algorithms\",\"authors\":\"W. Cai, Liya Wang, Z. Pan, X. Shao\",\"doi\":\"10.1039/A904553H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An annealing evolutionary algorithm (AEA), which combines aspects of genetic algorithms and simulated annealing, is proposed to find the global minimum of a non-linear least square function for spectral fitting. By application of the algorithm to the fitting of structural parameters from experimental extended X-ray absorption fine structure (EXAFS) spectra of two Cu samples, it was found that reasonable results were obtained. Comparing with genetic algorithms and EXCURVE88, the AEA method is faster and more accurate in analysis of EXAFS spectra.\",\"PeriodicalId\":7814,\"journal\":{\"name\":\"Analytical Communications\",\"volume\":\"33 1\",\"pages\":\"313-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/A904553H\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A904553H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种结合遗传算法和模拟退火的退火进化算法,求解非线性最小二乘函数的全局最小值,用于谱拟合。将该算法应用于两种Cu样品的实验扩展x射线吸收精细结构(EXAFS)光谱的结构参数拟合,得到了合理的结果。与遗传算法和EXCURVE88相比,AEA方法在分析EXAFS光谱时速度更快、精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of extended X-ray absorption fine structure spectra using annealing evolutionary algorithms
An annealing evolutionary algorithm (AEA), which combines aspects of genetic algorithms and simulated annealing, is proposed to find the global minimum of a non-linear least square function for spectral fitting. By application of the algorithm to the fitting of structural parameters from experimental extended X-ray absorption fine structure (EXAFS) spectra of two Cu samples, it was found that reasonable results were obtained. Comparing with genetic algorithms and EXCURVE88, the AEA method is faster and more accurate in analysis of EXAFS spectra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信