麦克斯韦方程组的重访——心理意象和数学符号

IF 0.5 Q3 MATHEMATICS
M. Geyer, Jan Hausmann, Konrad Kitzing, Madlyn Senkyr, S. Siegmund
{"title":"麦克斯韦方程组的重访——心理意象和数学符号","authors":"M. Geyer, Jan Hausmann, Konrad Kitzing, Madlyn Senkyr, S. Siegmund","doi":"10.5817/am2023-1-47","DOIUrl":null,"url":null,"abstract":"Using Maxwell's mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\\operatorname{curl} \\mathbf{E} = -\\frac{\\partial \\mathbf{B}}{\\partial t}$, $\\operatorname{curl} \\mathbf{H} = \\frac{\\partial \\mathbf{D}}{\\partial t} + \\mathbf{j}$, $\\operatorname{div} \\mathbf{D} = \\varrho$, $\\operatorname{div} \\mathbf{B} = 0$, which together with the constituting relations $\\mathbf{D} = \\varepsilon_0 \\mathbf{E}$, $\\mathbf{B} = \\mu_0 \\mathbf{H}$, form what we call today Maxwell's equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare's lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.","PeriodicalId":45191,"journal":{"name":"Archivum Mathematicum","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maxwell’s equations revisited – mental imagery and mathematical symbols\",\"authors\":\"M. Geyer, Jan Hausmann, Konrad Kitzing, Madlyn Senkyr, S. Siegmund\",\"doi\":\"10.5817/am2023-1-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using Maxwell's mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\\\\operatorname{curl} \\\\mathbf{E} = -\\\\frac{\\\\partial \\\\mathbf{B}}{\\\\partial t}$, $\\\\operatorname{curl} \\\\mathbf{H} = \\\\frac{\\\\partial \\\\mathbf{D}}{\\\\partial t} + \\\\mathbf{j}$, $\\\\operatorname{div} \\\\mathbf{D} = \\\\varrho$, $\\\\operatorname{div} \\\\mathbf{B} = 0$, which together with the constituting relations $\\\\mathbf{D} = \\\\varepsilon_0 \\\\mathbf{E}$, $\\\\mathbf{B} = \\\\mu_0 \\\\mathbf{H}$, form what we call today Maxwell's equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare's lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.\",\"PeriodicalId\":45191,\"journal\":{\"name\":\"Archivum Mathematicum\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archivum Mathematicum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5817/am2023-1-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archivum Mathematicum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5817/am2023-1-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用麦克斯韦对假想流体的管状流体运动的想象,我们推导出了他的方程$\operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, $\operatorname{curl} \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$, $\operatorname{div} \mathbf{D} = \varrho$, $\operatorname{div} \mathbf{B} = 0$,这些方程与构成关系$\mathbf{D} = \varepsilon_0 \mathbf{E}$, $\mathbf{B} = \mu_0 \mathbf{H}$一起构成了我们今天所说的麦克斯韦方程。主要的工具是散度,旋度和梯度积分定理和一个版本的庞加莱引理表述的向量微积分符号。对电动力学理论发展历史的评论,对原始文献和二手文献的引用和参考文献进行了补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maxwell’s equations revisited – mental imagery and mathematical symbols
Using Maxwell's mental imagery of a tube of fluid motion of an imaginary fluid, we derive his equations $\operatorname{curl} \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$, $\operatorname{curl} \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j}$, $\operatorname{div} \mathbf{D} = \varrho$, $\operatorname{div} \mathbf{B} = 0$, which together with the constituting relations $\mathbf{D} = \varepsilon_0 \mathbf{E}$, $\mathbf{B} = \mu_0 \mathbf{H}$, form what we call today Maxwell's equations. Main tools are the divergence, curl and gradient integration theorems and a version of Poincare's lemma formulated in vector calculus notation. Remarks on the history of the development of electrodynamic theory, quotations and references to original and secondary literature complement the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archivum Mathematicum
Archivum Mathematicum MATHEMATICS-
CiteScore
0.70
自引率
16.70%
发文量
0
审稿时长
35 weeks
期刊介绍: Archivum Mathematicum is a mathematical journal which publishes exclusively scientific mathematical papers. The journal, founded in 1965, is published by the Department of Mathematics and Statistics of the Faculty of Science of Masaryk University. A review of each published paper appears in Mathematical Reviews and also in Zentralblatt für Mathematik. The journal is indexed by Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信