A. Maulana, M. Tumpu, Indah Putri Indriani, I. Utama
{"title":"印尼苏拉威西岛北卢乌地区未来洪水缓解的洪水沉积学","authors":"A. Maulana, M. Tumpu, Indah Putri Indriani, I. Utama","doi":"10.28991/cej-2023-09-04-011","DOIUrl":null,"url":null,"abstract":"A sedimentological study after the flash floods that hit North Luwu on July 13, 2020, has been carried out on three affected rivers, namely the Masamba River, the Radda River, and the Binuang River. The study aims to determine the sedimentological impact of the 2020 flash flood disaster, including sedimentation rate, annual bedload sediment volume, and total sediments, which will be used as a reference for future mitigation consideration. The study is based on fieldwork for data collection and laboratory analysis. The results of field measurements and laboratory analysis are then processed by calculating the sedimentation rate at the annual discharge, the bedload sediment volume, and the total estimated sediment accumulated by the flash flood. Sedimentation rate analysis was performed using the Ackers-White formula, and flood delineation was processed using HEC-RAS software. The climatological data from the climatology station at Andi Djemma Airport were used to calculate the river discharge. It is estimated that the volume of bedload sediment in the Binuang River is 16,194,168 m3/year, that of the Masamba River is 7,852,061 m3/year, and that of the Radda River is 4,003,011 m3/year. The volume of sediment brought by flash flood sedimentation in the Radda River is 9,141,608.39 m3, while that in the Masamba River is 55,131,761.29 m3, and that in the Binuang River is 136,838,603.61 m3. The total estimated sedimentation generated by the flash flood on the three rivers on July 13, 2020, is 222,476,966 m3. Based on the study, zonation for vulnerability levels is designed for a future mitigation scheme. The zonation can be classified into three zones: 1) the highly affected zone; 2) the moderately affected zone; and 3) the least affected zone, with special purposes in each zone. It is strongly recommended that future disaster settlement and infrastructure reconstruction policies be based on this zone to reduce disaster risk. Doi: 10.28991/CEJ-2023-09-04-011 Full Text: PDF","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flood Sedimentology for Future Floods Mitigation in North Luwu, Sulawesi, Indonesia\",\"authors\":\"A. Maulana, M. Tumpu, Indah Putri Indriani, I. Utama\",\"doi\":\"10.28991/cej-2023-09-04-011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sedimentological study after the flash floods that hit North Luwu on July 13, 2020, has been carried out on three affected rivers, namely the Masamba River, the Radda River, and the Binuang River. The study aims to determine the sedimentological impact of the 2020 flash flood disaster, including sedimentation rate, annual bedload sediment volume, and total sediments, which will be used as a reference for future mitigation consideration. The study is based on fieldwork for data collection and laboratory analysis. The results of field measurements and laboratory analysis are then processed by calculating the sedimentation rate at the annual discharge, the bedload sediment volume, and the total estimated sediment accumulated by the flash flood. Sedimentation rate analysis was performed using the Ackers-White formula, and flood delineation was processed using HEC-RAS software. The climatological data from the climatology station at Andi Djemma Airport were used to calculate the river discharge. It is estimated that the volume of bedload sediment in the Binuang River is 16,194,168 m3/year, that of the Masamba River is 7,852,061 m3/year, and that of the Radda River is 4,003,011 m3/year. The volume of sediment brought by flash flood sedimentation in the Radda River is 9,141,608.39 m3, while that in the Masamba River is 55,131,761.29 m3, and that in the Binuang River is 136,838,603.61 m3. The total estimated sedimentation generated by the flash flood on the three rivers on July 13, 2020, is 222,476,966 m3. Based on the study, zonation for vulnerability levels is designed for a future mitigation scheme. The zonation can be classified into three zones: 1) the highly affected zone; 2) the moderately affected zone; and 3) the least affected zone, with special purposes in each zone. It is strongly recommended that future disaster settlement and infrastructure reconstruction policies be based on this zone to reduce disaster risk. Doi: 10.28991/CEJ-2023-09-04-011 Full Text: PDF\",\"PeriodicalId\":53612,\"journal\":{\"name\":\"Open Civil Engineering Journal\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Civil Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28991/cej-2023-09-04-011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/cej-2023-09-04-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Flood Sedimentology for Future Floods Mitigation in North Luwu, Sulawesi, Indonesia
A sedimentological study after the flash floods that hit North Luwu on July 13, 2020, has been carried out on three affected rivers, namely the Masamba River, the Radda River, and the Binuang River. The study aims to determine the sedimentological impact of the 2020 flash flood disaster, including sedimentation rate, annual bedload sediment volume, and total sediments, which will be used as a reference for future mitigation consideration. The study is based on fieldwork for data collection and laboratory analysis. The results of field measurements and laboratory analysis are then processed by calculating the sedimentation rate at the annual discharge, the bedload sediment volume, and the total estimated sediment accumulated by the flash flood. Sedimentation rate analysis was performed using the Ackers-White formula, and flood delineation was processed using HEC-RAS software. The climatological data from the climatology station at Andi Djemma Airport were used to calculate the river discharge. It is estimated that the volume of bedload sediment in the Binuang River is 16,194,168 m3/year, that of the Masamba River is 7,852,061 m3/year, and that of the Radda River is 4,003,011 m3/year. The volume of sediment brought by flash flood sedimentation in the Radda River is 9,141,608.39 m3, while that in the Masamba River is 55,131,761.29 m3, and that in the Binuang River is 136,838,603.61 m3. The total estimated sedimentation generated by the flash flood on the three rivers on July 13, 2020, is 222,476,966 m3. Based on the study, zonation for vulnerability levels is designed for a future mitigation scheme. The zonation can be classified into three zones: 1) the highly affected zone; 2) the moderately affected zone; and 3) the least affected zone, with special purposes in each zone. It is strongly recommended that future disaster settlement and infrastructure reconstruction policies be based on this zone to reduce disaster risk. Doi: 10.28991/CEJ-2023-09-04-011 Full Text: PDF
期刊介绍:
The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.